Is there any performance advantage to marking a page
read-only if | had no intention of writing to it anyway?

B® devblogs.microsoft.com/oldnewthing/20231009-00

October 9, 2023

Raymond Chen

Suppose you have a chunk of memory that you fill with data, but don’t intend to write to after
it has been initialized. Is there any performance benefit to changing its page protection to
read-only?

Not really.

In theory, a CPU could take advantage of this, but in practice, they don’t. The CPU already
knows that all of the operations are reads because that’s all you've ever done. The cache
line for the memory will remain clean, even if the underlying page is read-write. Besides, it's
possible that the same physical page is mapped read-write via some other virtual address,
so the CPU has to be ready for writes anyway.

One page table trick that does provide performance improvements is large pages: This
reduces TLB pressure by allowing a large block of memory (the exact size varying_from
processor to processor) to occupy a single TLB slot.

But wait, don’t go crazy and start allocating all of your memory with large pages. “They told
me large pages have better performance, so let's make the whole plane out of large pages!”

Large pages are large. If you allocate a large page but use only a little bit of it, then you
haven’t actually saved any TLB entries. It’s like buying a bunch of large storage boxes
because you read that they’re more efficient, but filling each one with only a small amount of
stuff. The point of buying the large boxes is so you can use fewer of them to pack the same
amount of stuff. If you get large boxes to replace the same number of small boxes, then you
haven't really saved anything. You just over-spent on boxes.

So should you use large pages if you promise to fill them up?

Background reading: Some remarks on VirtualAlloc and MEM LARGE PAGES.

1/2


https://devblogs.microsoft.com/oldnewthing/20231009-00/?p=108868
https://devblogs.microsoft.com/oldnewthing/20210510-00/?p=105200
https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643

Getting access to large pages is already a bit of a hassle, since it requires “lock pages”
privilege, which is normally assigned only to administrators. Furthermore, allocating them is a
hassle, and once you have them, the large pages are non-pageable. In practice, large pages
are useful only for programs like SQL Server that require very large quantities of memory
and run on systems that are dedicated to running that program exclusively.

I mean, you can try it on your Home Edition, but you probably won’t notice much of a benefit.
Your program is unlikely to be in a situation where TLB pressure is what’s slowing you down.

2/2



