On the confusing names for the Windows service SID
types

=. devblogs.microsoft.com/oldnewthing/20231004-00

October 4, 2023

%
Raymond Chen

When you configure a Windows Service process, you can specify what identity the service
runs as (e.g., Local Service), and you can also configure how the service SID appears in the
service’s token. Programmatically, you do this by specifying a SERVICE _CONFIG_SERVICE
SID_INFO, with one of the following SID types:’

SERVICE_SID_TYPE_NONE Do not add the service SID.

SERVICE_SID_TYPE_UNRESTRICTED | Add the service SID as an unrestricted SID.

SERVICE_SID_ TYPE_RESTRICTED Add the service SID as a restricted SID.

The names of these values is a little confusing, because the terms “restricted” and
“‘unrestricted” apply not to the token but to the service SID inside the token.

Even more confusing is that the documentation for RESTRICTED says
This type includes SERVICE SID TYPE_UNRESTRICTED.

Huh? “Restricted includes unrestricted”? Shouldn'’t it be the other way, so that unrestricted is
a superset of restricted? You’d think that an unrestricted service should be able to do all the
things that a restricted service can do, and more!

All of this becomes less confusing if | rename the flags.

SERVICE_SID_PRESENCE_NONE The service SID is not present.

SERVICE_SID_PRESENCE_PRESENT The service SID is present.

SERVICE_SID PRESENCE_RESTRICTED | The service SID is restricted.

1/3


https://devblogs.microsoft.com/oldnewthing/20231004-00/?p=108849

The first step is to decide whether or not the service SID is present at all. If not, then pass
NONE and you’re done.

If you do want the service SID to be present, then pass PRESENT. And then you get to decide
whether you want it restricted. If so, then also pass RESTRICTED. Otherwise, pass only
PRESENT, and it will be present and unrestricted.

Adding the service SID to the token allows the service to access resources protected by an
ACL that grants access to the service SID. Restricting the service SID after adding it further
constraints what the process can access.

The remark in the documentation about “Restricted include unrestricted” is a remark about
the flags themselves, and not what they mean. The RESTRICTED flag also includes the
UNRESTRICTED (a.k.a. PRESENT) bit as a convenience, because the service SID must be
present in order for it to be restricted.

Okay, now let’s translate from the alternate names back to the official names:
If you don’t want the service SID to be present, then pass NONE.

If you do want the service SID to be present, then pass UNRESTRICTED. If you want it to be
present and restricted, then pass RESTRICTED. (You don’t have to pass UNRESTRICTED |
RESTRICTED because RESTRICTED includes UNRESTRICTED.)

Exercise: Now that you understand what these SID types mean, you can address this
security vulnerability report:

| have found a way for one service to access the files created by another service.

First, write a service that create a file in a well-known location. Install the service and
configure it to run as Local Service. Use the sc sidtype command to set the service
SID to unrestricted. Start the service, and observe that the file is created.

Now create a second service which tries to access the file in that well-known location.
Install the service service and also configure it to run as Local Service. Start the
second service, and observe that it can successfully access the file, even though the
first service is unrestricted.

When a service is unrestricted, the files it creates should be owned by the service SID,
so that other services cannot access them.

' There are other side effects of adding the service SID, which are spelled out in the
documentation, but I'm going to focus on whether and how the service SID is added to the
SID list.

2/3


https://learn.microsoft.com/en-us/windows/win32/api/winsvc/ns-winsvc-service_sid_info

Answer to exercise: Whether the service SID is present has no effect on the account the
service runs as. Both services are running as Local Service, and files created when running
as Local Service are owned by Local Service. The service SID in the first service’s token
does not alter the owner of newly-created files. It merely says that the first service, in
addition to accessing everything that Local Service can access, can also access anything
which grants access to the service SID.

Therefore, it is not surprising and indeed expected that the second service, also running as
Local Service, can access any files created by Local Service.

If you want to customize the owner assigned to objects created by a process, use SetToken-

Information with Tokenowner to specify the SID that should be recorded as the owner of
newly-created objects.

3/3



