The dangers of releasing the last strong reference from
within its own callback

B® devblogs.microsoft.com/oldnewthing/20230927-00

September 27, 2023

Rayyrhond Chen

A common callback pattern is that unregistering a callback will wait until any outstanding
callbacks have completed. This avoids the problem of freeing the data out from under a
running callback.

Thread 1 Thread 2

RegisterCallback(callback, this);

callback begins

Destructor begins : do stuff with this
UnregisterCallback(callback) : do stuff with this
Destructor completes : do stuff with this

: do stuff with this

callback returns

In the above example, the Unregistercallback doesn’t wait for the outstanding callback to
complete, and as a result, the object is destructed while there is code still using it.

Forcing Unregistercallback to wait for outstanding callbacks to complete avoids this
problem:

Thread 1 Thread 2

RegisterCallback(callback, this);

callback begins

Destructor begins : do stuff with this

1/6

https://devblogs.microsoft.com/oldnewthing/20230927-00/?p=108831

UnregisterCallback(callback) : do stuff with this

: waiting for callback to finish : do stuff with this
: waiting for callback to finish : do stuff with this
: waiting for callback to finish callback returns

UnregistercCallback(callback) returns

Destructor completes

This pattern avoids a use-after-free problem, but it creates a new one: Deadlock.

If your callback takes a strong reference to the containing object, then when that strong
reference is destructed at the end of the callback, that may end up destructing the last strong
pointer to the object, causing the object itself to destruct from inside the callback. That
destructor will wait for the callback to complete, and we have deadlocked.

Reference

Thread 1 Thread 2 count
Constructor
:Registercallback(callback, 1
this);
Retain strong reference 1

callback begins

: create strong reference to self 2

: do stuff with this
Release strong reference : do stuff with this 1

: do stuff with this

: do stuff with this

: destruct local strong reference 0

::Destructor runs

:‘Unregistercallback(callback)
hangs

2/6

The call to unregistercallback hangs because it is waiting for the callback to complete, but
the callback is itself waiting for the destructor to finish, and the destructor is stuck in the
UnregisterCallback.

For thread pool callbacks, we could use DisassociateCurrentThreadFromCallback to break
the deadlock. But other types of callbacks may not have a way to say, “Act as if | returned
(even though | haven't yet).”

One solution is to forbid taking a strong reference to the containing object from the callback.

void MyObject::callback(CallbackData* data, void* context)

{
auto self = reinterpret_cast<MyObject*>(context);
// Calling self->get_strong() or self->shared_from_this()
// 1is forbidden! Or in fact anything else that might result in
// a strong reference to MyObject.
//
// Also, cannot access any members that are initialized after
// the RegisterCallback call or cleaned up before the
// UnregisterCallback call.
[do stuff with "self"]
}

In addition to forbidding strong references, we must also make sure not to access any
members which are initialized in the constructor after the call to Registercallback or
cleaned up in the destructor prior to the Unregistercallback call. In the common case that
the callback is managed by an RAll type, this means that you cannot access any members
which are declared after the RAIl type or manually initialized in the constructor body; nor can
you access any members which are cleaned up explicitly in the destructor, or declared after
the RAIl type. (The “declared after the RAIl type” restriction comes from the rule that C++
members are initialized in order of declaration in the class definition, and destructed in
reverse order.)

For example, suppose callback holder is an RAIl type that calls Unregistercallback at
destruction.

3/6

https://devblogs.microsoft.com/oldnewthing/20180503-00/?p=98665

struct MyObject
{

std::string m_valuel;

wWidget m_widget;

callback_holder m_callback(&MyObject::callback, this);
std::string m_value2;

MyObject()
{

m_widget.prime();

}

~MyObject()

{
m_widget.disable();

}

static void callback(CallbackData* data, void* context);

iy

Given the above class, the callback cannot access m_value2, since it is constructed after
m_callback and destructed before it. It also has to be prepared for running before m_widget
has been primed or running after m_widget has been disabled.

The fact that the callback is still potentially active before the constructor finishes and after the
destructor starts means that the usual rule of thumb that “there won’t be any conflicting
threads during construction or destruction” does not apply, since there may be an active
callback that is racing the constructor or destructor.

You can simplify the rules by explicitly registering the callback at the end of the constructor
and unregistering it at the start of the destructor:

MyObject ()

{
m_widget.prime();
// Do this last: Don't register for callbacks
// until all members are ready.
m_callback.register(&MyObject::callback, this);

}

~MyObject()

{
// Do this first: Ensure all outstanding
// callbacks have completed.
m_callback.reset();
m_widget.disable();

}

4/6

Now, that’s a lot of rules to remember in the callback. Furthermore, enforcing these rules
may be difficult if the “do stuff with se1f” is complex and calls other methods: Those other
methods now need to know the rules about forbidden strong references and unsafe member
variables, and these are the sorts of rules that are easy to break by accident and hard to
detect via static analysis.

Another option is to queue further work and return from the callback immediately. Give that
future work a weak reference, with the promise not to resolve the weak reference to a strong
reference until after you have arrived on the other thread.

void MyObject::Callback(CallbackData* data, void* context)
{

auto self = reinterpret_cast<MyObject*>(context);

[J(auto weak, auto important) -> fire_and_forget {
co_await resume_background();
if (auto strong = weak.get()) {
[do stuff with "strong" 1]

}
}(get_weak(), data->important);

}

The data we carry to the background thread are a weak reference to ourselves, as well as
any event payload that we need. (We probably can’t capture the raw pointer data since that
would result in using the data pointer after the callback returns.) Only after safely arriving on
the background thread do we try to promote the weak reference to a strong reference, and
we bail out if the object has already begun destruction.

Another solution is to break the deadlock by forcing the destructor to run outside of the
callback: In C++/WinRT, you can declare your class with a final release and move the
destruction to another thread.

struct MyObject : implements<MyObject, IInspectable>

{
static fire_and_forget final_release(std::unique_ptr<MyObject> ptr)
{
// Queue continuation on a background thread
co_await resume_background();
// allow ptr to destruct on a background thread
}
}

This is probably the simplest solution, assuming you have it available as an option, since it
allows the rest of the class to write code “naturally” and not have to worry about all the weird
rules.

5/6

https://learn.microsoft.com/windows/uwp/cpp-and-winrt-apis/details-about-destructors#deferred-destruction

6/6

