
1/3

September 14, 2023

I accidentally performed an operation on
INVALID_HANDLE_VALUE, and it worked: What just
happened?

devblogs.microsoft.com/oldnewthing/20230914-00

Raymond Chen

Suppose you have some code that wants to open a file and share it with another process.

HANDLE file = CreateFile(...);

HANDLE dup;

if (DuplicateHandle(

 GetCurrentProcess(), /* source process */

 file, /* source handle */

 targetProcess,

 &dup,

 0,

 FALSE, /* no inherit */

 DUPLICATE_SAME_ACCESS)) {

 ... tell the other process to use "dup" ...

}

CloseHandle(file);

This code is missing some critical error handling: What if the CreateFile fails?

If CreateFile fails, it returns INVALID_HANDLE_VALUE. This code then passes INVALID_
HANDLE_VALUE as the source handle to duplicate into the other process. But instead of failing,
the DuplicateHandle succeeds and produces a handle. What handle just got duplicated?

Some time ago, we studied why HANDLE return values are so inconsistent, and I mentioned
that

By coincidence, the value INVALID_HANDLE_VALUE happens to be numerically equal to
the pseudohandle returned by GetCurrentProcess().

Therefore, what happened is that we gave a copy of our own process handle to the other
process.

Oops.

https://devblogs.microsoft.com/oldnewthing/20230914-00/?p=108766
https://devblogs.microsoft.com/oldnewthing/20040302-00/?p=40443

2/3

But wait, there’s more. The handle returned by GetCurrentProcess() has PROCESS_ALL_
ACCESS permission. Not only did you give the other process the wrong thing, you gave it
possibly the worst possible thing: You gave it full control over your own process.

Double oops.

Why does GetCurrentProcess() return a pseudo-handle value that matches a common
error case that people could overlook? I don’t know, but I have an idea.

Developer 1: “Hey, what fake handle value should GetCurrentProcess() return?”

Developer 2: “I dunno. We need to pick something that is guaranteed never to accidentally
match a real handle value.”

Developer 1: “Look, there’s this special value INVALID_HANDLE_VALUE that is returned to
indicate that an error occurred. This is provably a handle value that can never match a real
handle, since it is used to indicate a problem.”

Developer 2: “Great, let’s use that!”

It seemed like a good idea at the time. For a special value, use something that couldn’t
possibly conflict with a normal value.

Unfortunately, people are fallible, and bugs can occur like

3/3

HANDLE file = INVALID_HANDLE_VALUE;

if (want_file) {

 file = CreateFile(...);

 if (file == INVALID_HANDLE_VALUE) {

 error();

 return;

 }

/* other intervening code */

// Okay, give the file to the other process.

HANDLE dup;

if (DuplicateHandle(

 GetCurrentProcess(), /* source process */

 file, /* source handle */

 targetProcess,

 &dup,

 0,

 FALSE, /* no inherit */

 DUPLICATE_SAME_ACCESS)) {

 ... tell the other process to use "dup" ...

}

CloseHandle(file);

The code that calls DuplicateHandle forgot to check whether want_file is set and
inadvertently passed INVALID_HANDLE_VALUE. Oops, duplicated a full-access process
handle.

This pattern of “using an invalid value to carry a special alternate meaning” is actually quite
common. For example, SetWindowsHookEx uses a thread ID of zero to mean “global hook”,
since zero is not a valid thread ID. And many functions imbue the special value nullptr with
all sorts of special meaning.

In retrospect, the choice to use INVALID_HANDLE_VALUE as a pseudohandle was unfortunate.
But what happened happened. You can’t change the past, and in computer software, you
have to live with your mistakes.

Bonus chatter: RPC has the system_handle attribute which lets you pass kernel handles
via RPC, and you also have to say what kind of kernel handle you intend to pass. For files,
you say system_handle(sh_file). If you pass the wrong kind of handle, the operation fails.
There’s a sample in the Windows Classic Samples repo.

https://learn.microsoft.com/en-us/windows/win32/midl/system-handle
https://github.com/microsoft/Windows-classic-samples/tree/main/Samples/SystemHandlePassing

