| accidentally performed an operation on
INVALID _HANDLE_VALUE, and it worked: What just
happened?

=. devblogs.microsoft.com/oldnewthing/20230914-00

September 14, 2023

K
Raymond Chen

Suppose you have some code that wants to open a file and share it with another process.
HANDLE file = CreateFile(...);

HANDLE dup;
if (DuplicateHandle(
GetCurrentProcess(), /* source process */
file, /* source handle */
targetProcess,
&dup,
0,
FALSE, /* no inherit */
DUPLICATE_SAME_ACCESS)) {
. tell the other process to use "dup" ...

}

CloseHandle(file);
This code is missing some critical error handling: What if the CreateFile fails?

If createFile fails, it returns INVALID HANDLE VALUE. This code then passes INVALID
HANDLE_VALUE as the source handle to duplicate into the other process. But instead of failing,
the buplicateHandle succeeds and produces a handle. What handle just got duplicated?

Some time ago, we studied why HANDLE return values are so inconsistent, and | mentioned
that

By coincidence, the value INVALID_ HANDLE_ VALUE happens to be numerically equal to
the pseudohandle returned by GetCurrentProcess().

Therefore, what happened is that we gave a copy of our own process handle to the other
process.

Oops.

1/3

https://devblogs.microsoft.com/oldnewthing/20230914-00/?p=108766
https://devblogs.microsoft.com/oldnewthing/20040302-00/?p=40443

But wait, there’s more. The handle returned by GetCurrentProcess() has PROCESS ALL
ACCESS permission. Not only did you give the other process the wrong thing, you gave it
possibly the worst possible thing: You gave it full control over your own process.

Double oops.

Why does GetCurrentProcess() return a pseudo-handle value that matches a common
error case that people could overlook? | don’t know, but | have an idea.

Developer 1: “Hey, what fake handle value should GetCurrentProcess() return?”

Developer 2: “| dunno. We need to pick something that is guaranteed never to accidentally
match a real handle value.”

Developer 1: “Look, there’s this special value INVALID HANDLE VALUE that is returned to
indicate that an error occurred. This is provably a handle value that can never match a real
handle, since it is used to indicate a problem.”

Developer 2: “Great, let’s use that!”

It seemed like a good idea at the time. For a special value, use something that couldn’t
possibly conflict with a normal value.

Unfortunately, people are fallible, and bugs can occur like

2/3

HANDLE file = INVALID_HANDLE_VALUE;

if (want_file) {
file = CreateFile(...);
if (file == INVALID_HANDLE_VALUE) {
error();
return;

/* other intervening code */

// Okay, give the file to the other process.
HANDLE dup;
if (DuplicateHandle(
GetCurrentProcess(), /* source process */
file, /* source handle */
targetProcess,
&dup,
0/
FALSE, /* no inherit */
DUPLICATE_SAME_ACCESS)) {
. tell the other process to use "dup"

CloseHandle(file);

The code that calls buplicateHandle forgot to check whether want_file is set and
inadvertently passed INVALID HANDLE_ VALUE. Oops, duplicated a full-access process
handle.

This pattern of “using an invalid value to carry a special alternate meaning” is actually quite
common. For example, setwindowsHookEx uses a thread ID of zero to mean “global hook”,
since zero is not a valid thread ID. And many functions imbue the special value nullptr with
all sorts of special meaning.

In retrospect, the choice to use INVALID HANDLE VALUE as a pseudohandle was unfortunate.
But what happened happened. You can’t change the past, and in computer software, you
have to live with your mistakes.

Bonus chatter: RPC has the system handle attribute which lets you pass kernel handles
via RPC, and you also have to say what kind of kernel handle you intend to pass. For files,
you say system_handle(sh_file). If you pass the wrong kind of handle, the operation fails.
There’s a sample in the Windows Classic Samples repo.

3/3

https://learn.microsoft.com/en-us/windows/win32/midl/system-handle
https://github.com/microsoft/Windows-classic-samples/tree/main/Samples/SystemHandlePassing

