
1/2

September 13, 2023

How do I perform a case-insensitive comparison of two
strings in the Deseret script?

devblogs.microsoft.com/oldnewthing/20230913-00

Raymond Chen

A customer reported that they were having difficulty sorting strings in the Deseret script in a
case-insensitive manner. The CompareStringEx function, when called with the LOCALE_NAME_
INVARIANT locale and the NORM_IGNORECASE flag, reported the strings as unequal even if they
differed only in case.

// U+10412 (DESERET CAPITAL LETTER BEE)

wchar_t Bee[] = L"\xD801\xDC12";



// U+1043A (DESERET SMALL LETTER BEE)

wchar_t bee[] = L"\xD801\xDC3A";



auto result = CompareStringEx(LOCALE_NAME_INVARIANT,

NORM_IGNORECASE, Bee, -1, bee, -1, NULL, NULL, 0));


The customer suspected that they were using the wrong locale, but they couldn’t find a
Deseret locale. Is there one?

No, Windows does not have a Deseret locale, and that means that there is no custom sorting
information for the Deseret script, which means that the Windows locale system doesn’t
know that U+10412 and U+1043A are case variants.

The Unicode Common Locale Data Repository (CLDR) does have an entry for Deseret,
known as en_Dsrt, but it is a seed locale, meaning that it contains only minimal data and
consequently is of limited/questionable quality.

The locale team was curious about how the customer is using Deseret script, because the
next step will vary depending on the use case.

If the customer has a real-world corpus of text in Deseret script that they are processing,
then they should share some details with the Windows locale team so that they can better
understand how Deseret script is being used by customers, which may affect prioritization of
future work. In the meantime, the customer can use the International Components for

https://devblogs.microsoft.com/oldnewthing/20230913-00/?p=108763
https://cldr.unicode.org/
https://github.com/unicode-org/cldr/blob/main/seed/main/en_Dsrt.xml
http://site.icu-project.org/


2/2

Unicode (ICU) library (now included with Windows) to collate strings encoded in Deseret
script. For example, the ucol_strcoll function understands the case mapping rules for
Deseret script.

If the customer merely noticed this discrepancy while running automated testing over the
entire Unicode character set, then adding support in their program for text in the Deseret
script may very well be unnecessary, since the usage case was artificial. If they have no
organic use of Deseret script among their install base, it could be a significant architectural
change to their program for no real-world benefit. In that case, they should just mark those
tests as exceptions.

The team speculated that maybe the customer was doing genealogy or processing historical
documents. (They ruled out the possibility that the customer was just tinkering around as a
hobby, since those types of customers typically wouldn’t bother their customer liaison about
it, though sometimes they do it anyway.) My quick reading of the Wikipedia page for the
Deseret alphabet suggests that the script underwent reform during its brief lifetime. If that
reform included changes to collation (I don’t know whether it did), then the customer will also
have to take into account when the text was generated in order to collate it correctly.

We never heard back from the customer.






http://site.icu-project.org/
https://devblogs.microsoft.com/oldnewthing/20210527-00/?p=105255
https://unicode-org.github.io/icu/userguide/collation/api.html#compare
https://devblogs.microsoft.com/oldnewthing/20140513-00/?p=1003
https://en.wikipedia.org/wiki/Deseret_alphabet

