
1/6

September 11, 2023

Any sufficiently advanced uninstaller is indistinguishable
from malware

devblogs.microsoft.com/oldnewthing/20230911-00

Raymond Chen

There was a spike in Explorer crashes that resulted in the instruction pointer out in the
middle of nowhere.

0:000> r

eax=00000001 ebx=008bf8aa ecx=77231cf3 edx=00000000 esi=008bf680 edi=008bf8a8

eip=7077c100 esp=008bf664 ebp=008bf678 iopl=0 nv up ei pl zr na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010246

7077c100 ?? ???

Maybe the return address tells us something.

0:000> u poi esp

008bf6d4 test eax,eax

008bf6d6 je 008bf6b9

008bf6d8 xor edi,edi

008bf6da cmp dword ptr [esi+430h],edi

It’s strange that we’re executing from someplace that has no name. If you look closely, you’ll
see that we are executing code from the stack: esp is 008bf664, so the code that went
haywire is on the stack.

Who executes code from the stack?

Malware, that’s who.

Let’s see what this malware is trying to do.

Disassembling around the last known good code address gives us this:

https://devblogs.microsoft.com/oldnewthing/20230911-00/?p=108749

2/6

008bf6c4 call dword ptr [esi+214h]

008bf6ca inc dword ptr [ebp+8]

008bf6cd push edi

008bf6ce call dword ptr [esi+210h] ; this called into space

008bf6d4 test eax,eax

008bf6d6 je 008bf6b9

008bf6d8 xor edi,edi

008bf6da cmp dword ptr [esi+430h],edi

008bf6e0 je 008bf70d

It looks like the payload stored function pointers at esi+210 and esi+214. Let’s see what’s
there. This is probably where the payload stashed all its call targets.

0:000> dps @esi+200

008bf880 1475ff71

008bf884 00000004

008bf888 76daecf0 kernel32!WaitForSingleObject

008bf88c 76daeb00 kernel32!CloseHandle

008bf890 7077c100

008bf894 76dada90 kernel32!SleepStub

008bf898 76db6a40 kernel32!ExitProcessImplementation

008bf89c 76daf140 kernel32!RemoveDirectoryW

008bf8a0 76da6e30 kernel32!GetLastErrorStub

008bf8a4 770d53f0 user32!ExitWindowsEx

008bf8a8 003a0043

008bf8ac 0050005c

008bf8b0 006f0072

008bf8b4 00720067

008bf8b8 006d0061

Yup, there’s a payload of function pointers here. It looks like this malware is going to wait for
something, and then exit the process, or remove a directory, or exit Windows. Those bytes
after user32!ExitWindowsEx look like a Unicode string, so let’s dump them as a string:

0:000> du 008bf8a8

008bf8a8 "C:\Program Files\Contoso\contoso_update.exe"

Wait, what? It is trying to mess around with Contoso’s auto-updater?

Let’s take a look at more of the malware payload. Maybe we can figure out what it’s doing. It
looks like it’s using esi as its base of operations, so let’s disassemble from esi.

3/6

008bf684 push ebp ; build stack frame

008bf685 mov ebp,esp

008bf687 push ebx ; save ebx

008bf688 push esi ; save esi

008bf689 mov esi,dword ptr [ebp+8] ; parameter

008bf68c push edi ; save edi

008bf68d push 0FFFFFFFFh ; INFINITE

008bf68f push dword ptr [esi+204h] ; data->hProcess

008bf695 lea ebx,[esi+22Ah] ; address of path + 2

008bf69b call dword ptr [esi+208h] ; WaitForSingleObject

008bf6a1 push dword ptr [esi+204h] ; data->hProcess

008bf6a7 call dword ptr [esi+20Ch] ; CloseHandle

008bf6ad and dword ptr [ebp+8],0 ; count = 0

008bf6b1 lea edi,[esi+228h] ; address of path

008bf6b7 jmp 008bf6cd ; enter loop

008bf6b9 cmp dword ptr [ebp+8],28h ; waited too long?

008bf6bd jge 008bf6d8 ; then stop

008bf6bf push 1F4h ; 500

008bf6c4 call dword ptr [esi+214h] ; Sleep

008bf6ca inc dword ptr [ebp+8] ; count++

008bf6cd push edi ; path

008bf6ce call dword ptr [esi+210h] ; DeleteFile

008bf6d4 test eax,eax ; Q: Did it delete?

008bf6d6 je 008bf6b9 ; N: Loop and try again

008bf6d8 xor edi,edi

008bf6da cmp dword ptr [esi+430h],edi ; data->fRemoveDirectory?

008bf6e0 je 008bf70d ; N: Skip

008bf6e2 jmp 008bf6f0 ; Enter loop for trimming file name

008bf6e4 cmp ax,5Ch ; Q: Backslash?

008bf6e8 jne 008bf6ed ; N: Ignore

008bf6ea mov dword ptr [ebp+8],ebx ; Remember location of last backslash

008bf6ed add ebx,2 ; Move to character

008bf6f0 movzx eax,word ptr [ebx] ; Fetch next character

008bf6f3 cmp ax,di ; Q: End of string?

008bf6f6 jne 008bf6e4 ; N: Keep looking

008bf6f8 mov ecx,dword ptr [ebp+8] ; Get location of last backslash

008bf6fb xor eax,eax ; eax = 0

008bf6fd mov word ptr [ecx],ax ; Terminate string at last backslash
008bf700 lea eax,[esi+228h] ; Get path (now without file name)

008bf706 push eax ; Push address

008bf707 call dword ptr [esi+21Ch] ; RemoveDirectory

008bf70d cmp dword ptr [esi+434h],edi ; data->fExitWindows?

008bf713 je 008bf71e ; N: Skip

008bf715 push edi ; dwReason = 0

008bf716 push 12h ; EWX_REBOOT | EWX_FORCEIFHUNG

008bf718 call dword ptr [esi+224h] ; ExitWindowsEx

008bf71e push edi ; dwExitCode = 0

4/6

008bf71f call dword ptr [esi+218h] ; ExitProcess

008bf725 pop edi

008bf726 pop esi

008bf727 pop ebx

008bf728 pop ebp

008bf729 ret

; This code appears to be unused

008bf72a push ebp

008bf72b mov ebp,esp

008bf72d push esi

008bf72e mov esi,dword ptr [ebp+10h]

008bf731 test esi,esi

008bf733 jle 008bf746

...

Reverse-compiling back to C, we have

5/6

struct Data

{

 char code[0x0204];

 HANDLE hProcess;

 DWORD (CALLBACK* WaitForSingleObject)(HANDLE, DWORD);

 BOOL (CALLBACK* CloseHandle)(HANDLE);

 DWORD (CALLBACK* MysteryFunction)(PCWSTR);

 void (CALLBACK* Sleep)(DWORD);

 void (CALLBACK* ExitProcess)(UINT);

 BOOL (CALLBACK* RemoveDirectoryW)(PCWSTR);

 DWORD (CALLBACK* GetLastError)();

 BOOL (CALLBACK* ExitWindowsEx)(UINT, DWORD);

 wchar_t path[MAX_PATH];

 BOOL fRemoveDirectory;

 BOOL fExitWindows;

};
void Payload(Data* data)

{

 // Wait for the process to exit

 data->WaitForSingleObject(data->hProcess, INFINITE);

 data->CloseHandle(data->hProcess);

 // Try up to 20 seconds to do something with the file

 for (int count = 0;

 !data->MysteryFunction(data->path) && count < 40;

 count++) {

 Sleep(500);

 }

 if (data->fRemoveDirectory) {

 PWSTR p = &data->path[1];

 PWSTR lastBackslash = p;

 while (*p != L'\0') {

 if (*p == L'\\') lastBackslash = p;

 p++;

 }

 *lastBackslash = L'\0';

 RemoveDirectoryW(data->path);

 }

 if (data->fExitWindows) {

 ExitWindowsEx(EWX_REBOOT | EWX_FORCEIFHUNG, 0);

 }

}

Aha, this isn’t malware. This is an uninstaller!

The mystery function is almost certainly DeleteFileW. It’s waiting for the main uninstaller to
exit, so it can delete the binary.

6/6

There is a page on CodeProject that shows how to write a self-deleting file, and it seems that
multiple companies have decided to use that code to implement their own uninstallers.
(Whether they follow the licensing terms for that code I do not know.)

Okay, so why did we crash? What went wrong with DeleteFileW?

According to the dump file, the spot where DeleteFileW was supposed to be instead holds
7077c100. This is a function pointer into some mystery DLL that isn’t loaded. How did that
happen?

My guess is that the DeleteFileW function was detoured in the Contoso uninstaller. When
the uninstaller tried to built its table of useful functions, it ended up getting not the address of
DeleteFileW but the address of a detour. It then tried to call that detour from its payload, but
since the detour is not installed in Explorer (or if it is, the detour is in some other location), it
ended up calling into space.

Neither code injection nor detouring is officially supported. I can’t tell who did the detouring.
Maybe somebody added a detour to the uninstaller, unaware that the uninstaller is going to
inject a call to the detour into Explorer. Or maybe the detour was injected by anti-malware
software. Or maybe the detour was injected by Windows’ own application compatibility layer.
Whatever the reason, the result was a crash in Explorer.

Which means that people like me spend a lot of time studying these crashes to figure out
what is going on, only to conclude that they were caused by other people abusing the
system.

If you want to create a self-deleting binary, please don’t use code injection into somebody
else’s process. Here’s a way to delete a binary and leave no trace:

Create a temporary file called cleanup.js that goes like this:

var fso = new ActiveXObject("Scripting.FileSystemObject");

fso.DeleteFile("C:\\Users\\Name\\AppData\\Local\\Temp\\cleanup.js");

var path = "C:\\Program Files\\Contoso\\contoso_update.exe";

for (var count = 0; fso.FileExists(path) && count < 40; count++) {

 try { fso.DeleteFile(path); break; } catch (e) { }

 WSH.Sleep(500);

}

This script deletes itself and then tries to delete contoso_update.exe for 20 seconds. Run it
with wscript cleanup.js and let it do its thing. No code injection, no detours, all
documented.

