Misinterpreting the misleadingly-named
STATUS_STACK BUFFER_OVERRUN

=. devblogs.microsoft.com/oldnewthing/20230731-00

July 31, 2023

9
Raymond Chen

| noted some time ago that STATUS STACK BUFFER OVERRUN doesn’t mean that there was a
stack buffer overrun, although that’'s what it meant at first. Later, the status code was
broadened to mean “Program self-triggered abnormal termination”, but it was too late to
change the name.

A security vulnerability report came in that went like this:

1/3


https://devblogs.microsoft.com/oldnewthing/20230731-00/?p=108505
https://devblogs.microsoft.com/oldnewthing/20190108-00/?p=100655

| have found a stack overflow bug in Explorer. This stack overflow occurs in
ucrtbase.dll and Windows.Ul.FileExplorer.dll. Since it occurs in Explorer, this can be

click it. I have also attached Explorer crash dumps for analysis.

EXCEPTION_RECORD: (.exr -1)

ExceptionAddress: 00007ffcaal9dd7e (ucrtbase!abort+0x000000000000004¢e)
ExceptionCode: c0000409 (Security check failure or stack buffer overrun)
ExceptionFlags: 00000001

NumberParameters: 1

Parameter[0]: 0000000000000007

Subcode: 0Ox7 FAST_FAIL_FATAL_APP_EXIT

STACK_TEXT:

ucrtbase!abort+0x4e

ucrtbase!terminate+0x29
ucrtbase!__crt_state_management::wrapped_invoke<void (__cdecl*)(void)
noexcept, void>+0xf
explorer!_scrt_unhandled_exception_filter+0x5a
KERNELBASE !UnhandledExceptionFilter+0x1f1
ntdll!LdrpLogFatalUserCallbackException+0xa2
ntdll!KiUserCallbackDispatcherHandler+0x20
ntdll!Rt1lpExecuteHandlerForException+0xf
ntdll!Rt1lDispatchException+0x25a
ntdll!Rt1RaiseException+0x163

KERNELBASE !RaiseException+0x6c
msvcr90!_CxxThrowException+0x86

contoso+0x104d
contososhellext!OnInvokeCommand+0x548
contososhellext!OnInvokeCommand+0x24d2a
contososhellext!OnGetCommandString+0x4f
contoso+0x2abd

contoso+0Ox27f0

shell32!CDefFolderMenu: :GetCommandString+0x1f6
shell32!CDefFolderMenu: :_UnduplicateVerbs+0x31f
shell32!CDefFolderMenu: :QueryContextMenu+0x7d2
shell32!CDefView: :_DoContextMenuPopup+0x2f7
shell32!CDefView: :0OnSelectionContextMenu+0x85
explorerframe!UIItemsView: :ShowContextMenu+0x378
explorerframe!CItemsView: :ShowContextMenu+0x17
shell32!CDefView: :_DoContextMenu+0x92
shell32!CDefView: :_OnContextMenu+0xec
shell32!CDefView: :WndProc+0x718
shell32!CDefView: :s_WndProc+0x5c
user32!UserCallwinProcCheckWow+0x33c
user32!CallwindowProcW+0x8e

From the exception record, we see that this was a fast-fail: FAST_FAIL FATAL_APP_EXIT.

exploited to escalate privileges. To reproduce, download the attached ZIP file and right-

2/3



From the stack trace we can see that this was due to an unhandled C++ exception thrown by
Contoso: Contoso called _cxxThrowException, and this ended up reaching the scrt_
unhandled _exception_filter, which decided to terminate the process.

The problem is therefore with the Contoso shell extension: When you right-click this file, the
Contoso shell extension throws a C++ exception which it does not handle.

C++ exceptions cannot be thrown across the ABI boundary because there’s no requirement
in the ABI that the calling code even be written in C++ at all'" And certainly unhandled C++
exceptions are really bad ideas.

There is a bug here, but the bug is in the Contoso shell extension, not in Explorer. Such is
the punishment for allowing third party extensibility: Any bug in a third party extension
manifests itself as a bug in Explorer.

' For example, the Windows 95 shell was written in C.

3/3



