
1/3

July 31, 2023

Misinterpreting the misleadingly-named
STATUS_STACK_BUFFER_OVERRUN

devblogs.microsoft.com/oldnewthing/20230731-00

Raymond Chen

I noted some time ago that STATUS_STACK_BUFFER_OVERRUN doesn’t mean that there was a
stack buffer overrun, although that’s what it meant at first. Later, the status code was
broadened to mean “Program self-triggered abnormal termination”, but it was too late to
change the name.

A security vulnerability report came in that went like this:

https://devblogs.microsoft.com/oldnewthing/20230731-00/?p=108505
https://devblogs.microsoft.com/oldnewthing/20190108-00/?p=100655


2/3

I have found a stack overflow bug in Explorer. This stack overflow occurs in
ucrtbase.dll and Windows.UI.FileExplorer.dll. Since it occurs in Explorer, this can be
exploited to escalate privileges. To reproduce, download the attached ZIP file and right-
click it. I have also attached Explorer crash dumps for analysis.

EXCEPTION_RECORD: (.exr -1)

ExceptionAddress: 00007ffcaa19dd7e (ucrtbase!abort+0x000000000000004e)

ExceptionCode: c0000409 (Security check failure or stack buffer overrun)

ExceptionFlags: 00000001

NumberParameters: 1

Parameter[0]: 0000000000000007

Subcode: 0x7 FAST_FAIL_FATAL_APP_EXIT


STACK_TEXT:

ucrtbase!abort+0x4e

ucrtbase!terminate+0x29

ucrtbase!__crt_state_management::wrapped_invoke<void (__cdecl*)(void) 
noexcept,void>+0xf

explorer!_scrt_unhandled_exception_filter+0x5a

KERNELBASE!UnhandledExceptionFilter+0x1f1

ntdll!LdrpLogFatalUserCallbackException+0xa2

ntdll!KiUserCallbackDispatcherHandler+0x20

ntdll!RtlpExecuteHandlerForException+0xf

ntdll!RtlDispatchException+0x25a

ntdll!RtlRaiseException+0x163

KERNELBASE!RaiseException+0x6c

msvcr90!_CxxThrowException+0x86

contoso+0x104d

contososhellext!OnInvokeCommand+0x548

contososhellext!OnInvokeCommand+0x24d2a

contososhellext!OnGetCommandString+0x4f

contoso+0x2abd

contoso+0x27f0

shell32!CDefFolderMenu::GetCommandString+0x1f6

shell32!CDefFolderMenu::_UnduplicateVerbs+0x31f

shell32!CDefFolderMenu::QueryContextMenu+0x7d2

shell32!CDefView::_DoContextMenuPopup+0x2f7

shell32!CDefView::OnSelectionContextMenu+0x85

explorerframe!UIItemsView::ShowContextMenu+0x378

explorerframe!CItemsView::ShowContextMenu+0x17

shell32!CDefView::_DoContextMenu+0x92

shell32!CDefView::_OnContextMenu+0xec

shell32!CDefView::WndProc+0x718

shell32!CDefView::s_WndProc+0x5c

user32!UserCallWinProcCheckWow+0x33c

user32!CallWindowProcW+0x8e


From the exception record, we see that this was a fast-fail: FAST_FAIL_FATAL_APP_EXIT.



3/3

From the stack trace we can see that this was due to an unhandled C++ exception thrown by
Contoso: Contoso called _CxxThrowException, and this ended up reaching the _scrt_
unhandled_exception_filter, which decided to terminate the process.

The problem is therefore with the Contoso shell extension: When you right-click this file, the
Contoso shell extension throws a C++ exception which it does not handle.

C++ exceptions cannot be thrown across the ABI boundary because there’s no requirement
in the ABI that the calling code even be written in C++ at all!¹ And certainly unhandled C++
exceptions are really bad ideas.

There is a bug here, but the bug is in the Contoso shell extension, not in Explorer. Such is
the punishment for allowing third party extensibility: Any bug in a third party extension
manifests itself as a bug in Explorer.

¹ For example, the Windows 95 shell was written in C.







