
1/4

May 26, 2023

Getting a strong reference from the this pointer too late
devblogs.microsoft.com/oldnewthing/20230526-00

Raymond Chen

It is a standard pattern for functions that are coroutines to promote the this pointer to a
strong reference (either a COM strong reference or a shared_ptr), so that the object won’t
be destructed while the coroutine is suspended. But it might be too late.

Consider the following example:

struct MyObject : winrt::implements<MyObject, winrt::IInspectable>

{

 MyObject() = default;

 ~MyObject() = default;


 winrt::Widget::Closed_revoker m_revoker;


 void RegisterForWidgetEvents(Widget const& widget)

 {

     m_revoker = widget.Closed(winrt::auto_revoke,

       { this, &MyObject::OnWidgetClosed });

 }


 winrt::fire_and_forget OnWidgetClosed(Widget const& sender, winrt::IInspectable 
const&)

 {

   auto lifetime = get_strong();


   co_await DoStuffAsync();

   co_await DoMoreStuffAsync();

 }

};

The idea here is that we register for the Widget’s Closed event with a raw pointer. When the
event is raised, the handle immediately promotes the raw pointer to a strong reference, so
that the MyObject does not destruct during the two asynchronous calls that follow.

But there’s still a race condition:

Thread 1 Thread 2

https://devblogs.microsoft.com/oldnewthing/20230526-00/?p=108252


2/4

  Widget closes

Last reference released  

  Widget::OnWidgetClosed begins

Destruction begins  

m_revoker unregisters handler  

  get_strong()

If the last reference is released before the Widget::OnWidgetClosed method reaches the
get_strong(), then the get_strong() method runs against an object that has already
started destructing. It will nevertheless produce a strong reference and increment the
reference count, but that reference count does not have the power of time travel. The
destructor is already running; you incremented the reference count too late. The result is a
mysterious crash.

A similar problem exists with std::shared_ptr:

struct MyObject : std::enable_shared_from_this<MyObject>

{

 MyObject() = default;

 ~MyObject() = default;


 winrt::Widget::Closed_revoker m_revoker;


 void RegisterForWidgetEvents(Widget const& widget)

 {

     m_revoker = widget.Closed(winrt::auto_revoke,

       { this, &MyObject::OnWidgetClosed });

 }


 winrt::fire_and_forget OnWidgetClosed(Widget const& sender, winrt::IInspectable 
const&)

 {

   auto lifetime = shared_from_this();


   co_await DoStuffAsync();

   co_await DoMoreStuffAsync();

 }

};

Thread 1 Thread 2

  Widget closes

https://devblogs.microsoft.com/oldnewthing/20230505-00/?p=108146


3/4

Last reference released  

  Widget::OnWidgetClosed begins

Destruction begins  

m_revoker unregisters handler  

  shared_from_this()

The call to shared_from_this() throws std::bad_weak_ptr because the weak pointer
cannot be converted to a shared_ptr.

In both cases, the problem is that the OnWidgetClosed callback is registered with a raw
pointer. Instead, use a weak pointer and try to promote it to a strong pointer in the callback.

 // C++/WinRT

 void RegisterForWidgetEvents(Widget const& widget)

 {

   m_revoker = widget.Closed(winrt::auto_revoke,

     [weak = get_weak()](auto&& sender, auto&& args)

     {

       if (auto strong = weak.get()) {

         strong->OnWidgetClosed(sender, args);

       }

     });

 }


 // C++/WinRT alternate version

 void RegisterForWidgetEvents(Widget const& widget)

 {

   m_revoker = widget.Closed(winrt::auto_revoke,

     { get_weak(), &MyObject::OnWidgetClosed });

 }


 // C++ standard library

 void RegisterForWidgetEvents(Widget const& widget)

 {

   m_revoker = widget.Closed(winrt::auto_revoke,

     [weak = weak_from_this()](auto&& sender, auto&& args)

     {

       if (auto strong = weak.lock()) {

         strong->OnWidgetClosed(sender, args);

       }

     });

 }


C++/WinRT provides a helper constructor that does the auto strong = weak.get() thing
automatically.



4/4

Since weak pointers will not promote to strong/shared pointers once the last strong/shared
reference is destructed, you don’t have the race condition where the callback tries to do
something with an object that has begun destructing.

Thread 1 Thread 2

  Widget closes

Last reference released

(weak pointers are now expired)

 

  Widget::OnWidgetClosed begins

Destruction begins  

m_revoker unregisters handler  

  weak.get() fails







