
1/5

May 15, 2023

What are the duck-typing requirements of C++/WinRT
com_ptr?

devblogs.microsoft.com/oldnewthing/20230515-00

Raymond Chen

We conclude our survey of duck-typing requirements of various C++ COM smart pointer
libraries by looking at C++/WinRT’s com_ptr, running it through our standard tests.

https://devblogs.microsoft.com/oldnewthing/20230515-00/?p=108187

2/5

// Dummy implementations of AddRef and Release for

// testing purposes only. In real code, they would

// manage the object reference count.

struct Test

{

 void AddRef() {}

 void Release() {}

 Test* AddressOf() { return this; }

};

struct Other

{

 void AddRef() {}

 void Release() {}

};

// Pull in the smart pointer library

// (this changes based on library)

#include <winrt/base.h>

using TestPtr = winrt::com_ptr<Test>;

using OtherPtr = winrt::com_ptr<Other>;

void test()

{

 Test test;

 // Default construction

 TestPtr ptr;

 // Construction from raw pointer

 TestPtr ptr2(&test); // (does not compile)

 // Copy construction

 TestPtr ptr3(ptr2);

 // Attaching and detaching

 auto p = ptr3.detach();

 ptr.attach(p);

 // Assignment from same-type raw pointer

 ptr3.copy_from(&test);

 // Assignment from same-type smart pointer

 ptr3 = ptr;

 // Accessing the wrapped object

 // (this changes based on library)

 if (ptr.get() != &test) {

 std::terminate(); // oops

 }

 if (ptr->AddressOf() != &test) {

3/5

 std::terminate(); // oops

 }

 // Returning to empty state

 ptr3 = nullptr;

 // Receiving a new pointer

 // (this changes based on library)

 Test** out = ptr3.put();

 // Bonus: Comparison.

 if (ptr == ptr2) {}

 if (ptr != ptr2) {}

 if (ptr < ptr2) {}

 // Litmus test: Accidentally bypassing the wrapper

 ptr->AddRef();

 ptr->Release();

 // Litmus test: Construction from other-type raw pointer

 Other other;

 TestPtr ptr4(&other);

 // Litmus test: Construction from other-type smart pointer

 OtherPtr optr;

 TestPtr ptr5(optr);

 // Litmus test: Assignment from other-type raw pointer

 ptr.copy_from(&other);

 // Litmus test: Assignment from other-type smart pointer

 ptr = optr;

 // Destruction

}

C++/WinRT doesn’t require that the Release method return a reference count, unlike ATL,
WRL, and wil. So that’s a relief.

As with wil, we have to make a small tweak to the boilerplate by switching to lowercase
names for detach and attach, because that’s how C++/WinRT spells them.

Another thing we have to fix is removing construction from raw pointers. C++/WinRT doesn’t
support the operation of “construct with shared ownership of a raw pointer”. It does support
“take ownership of a raw pointer” by passing the marker winrt::take_ownership_of_abi as
a second parameter. However, this is not generally used because it also discards type safety.

Instead of assigning a raw pointer, C++/WinRT uses the copy_from method. This makes it
clearer that the smart pointer is sharing ownership with the original, rather than taking
ownership from it. (The attach method takes ownership.)

4/5

The only way to receive a pointer in C++/WinRT is to use the put method. This releases the
old pointer and nulls it out, then returns the address of the pointer so a new value can be
placed there. There is no ability to access the inner pointer for in/out use.

C++/WinRT doesn’t “color” the return value of the -> operator, so you don’t get protection
from signatures, but you also don’t get protection from accidentally doing a ptr->Release()
when you meant to do a ptr = nullptr, but the two expressions are so different-looking
that you’re less likely to confuse them.

The other-type litmus tests all pass. They all result in various types of compile-time errors.

Finally, so here’s the scorecard for winrt::com_ptr.

winrt::com_ptr scorecard

Default construction Pass

Construct from raw pointer Not supported

Copy construction Pass

Destruction Pass

Attach and detach Pass

Assign to same-type raw pointer Pass (copy_from)

Assign to same-type smart pointer Pass

Fetch the wrapped pointer get()

Access the wrapped object ->

Receive pointer via & N/A

Release and receive pointer put()

Preserve and receive pointer N/A

Return to empty state Pass

Comparison Pass

Accidental bypass Fail

Construct from other-type raw pointer Pass

Construct from other-type smart pointer Pass

5/5

Assign from other-type raw pointer Pass

Assign from other-type smart pointer Pass

Next time, we’ll capture all these results into a large comparison table and discuss what we
find.

