What are the duck-typing requirements of wil com_ptr?

=. devblogs.microsoft.com/oldnewthing/20230512-00

May 12, 2023

Rayymond Chen

We continue our survey of duck-typing requirements of various C++ COM smart pointer
libraries by looking at wil’'s com_ptr, running it through our standard tests.

1/5

https://devblogs.microsoft.com/oldnewthing/20230512-00/?p=108183

// Dummy implementations of AddRef and Release for

// testing purposes only. In real code,
// manage the object reference count.
struct Test

{
void AddRef () {}
void Release() {}
Test* AddressOf() { return this; }
}
struct Other
{
void AddRef() {}
void Release() {}
}

// Pull in the smart pointer library
// (this changes based on library)
#include <wil/com.h>

using TestPtr = wil::com_ptr<Test>;
using OtherPtr = wil::com_ptr<Other>;

void test()

{
Test test;

// Default construction
TestPtr ptr;

// Construction from raw pointer
TestPtr ptr2(&test);

// Copy construction
TestPtr ptr3(ptr2);

// Attaching and detaching
auto p = ptr3.detach();
ptr.attach(p);

they would

// Assignment from same-type raw pointer

ptr3 = &test,;

// Assignment from same-type smart pointer

ptr3 = ptr;

// Accessing the wrapped object

// (this changes based on library)

if (ptr.get() !'= &test) {
std::terminate(); // oops

}
if (ptr->AddressOf() !'= &test) {

2/5

std::terminate(); // oops

// Returning to empty state
ptr3 = nullptr;

// Receiving a new pointer

// (this changes based on library)
Test** out = &ptrs3;

out = ptr3.put();

out = ptr3.addressof();

// Bonus: Comparison.

if (ptr == ptr2) {3}

if (ptr '= ptr2) {}

if (ptr < ptr2) {}

// Litmus test: Accidentally bypassing the wrapper

ptr->AddRef();
ptr->Release();

// Litmus test: Construction from other-type raw pointer
Other other;

TestPtr ptr4(&other);

// Litmus test: Construction from other-type smart pointer
OtherPtr optr;

TestPtr ptr5(optr);

// Litmus test: Assignment from other-type raw pointer
ptr = &other;

// Litmus test: Assignment from other-type smart pointer
ptr = optr;

// Destruction

Once again, we encounter the same glitch as we did with ATL ccomPtr and WRL ComPtr:

com.h(363,1): error C2440: '=': cannot convert from 'void' to 'ULONG'

It's coming from this code:

3/5

void attach(pointer other) WI_NOEXCEPT

{
auto ptr = m_ptr;
m_ptr = other;
if (ptr)
{
ULONG ref;
ref = ptr->Release();
WI_ASSERT_MSG(((other !'= ptr) || (ref > 0)), "Bug: Attaching the same
already assigned, destructed pointer");
}
}

The code peeks at the reference count of the outgoing object and confirms that we didn’t
attach a smart pointer to itself.

As usual, the fix is to make the Release method return a ULONG representing the new
reference count.

struct Test

{
void AddRef() { }
// Dummy implementation for testing purposes only.
ULONG Release() { return 1; }

+i

We have to make a small tweak to the boilerplate by switching to lowercase names for
detach and attach, because that’'s how wil spells them.

Once we fix that up, the basic tests all pass. The comparison tests compare the wrapped
pointers.

There are three ways to receive a pointer in wil. You can use the & operator, which is a
shorthand for the method call put (), which releases the old pointer and nulls it out, then
returns the address of the pointer so a new value can be placed there. Alternatively, you can
use addressof (), which does not release the old pointer. Use addressof () in the cases
where the parameter is used as an in/out pointer.

wil does not use the ATL trick of “coloring” the return value of the -> operator, so you don’t
have all the hassles of matching the signatures, but you also don’t get protection from
accidentally doing a ptr->Release() when you meant to do a ptr.reset(). Fortunately,
there is no ptr.release() method, so the mistake is a little less likely.

The other-type litmus tests all pass. They all result in various types of compile-time errors.

Okay, so here’s the scorecard for wil: :com ptr.

4/5

wil::com_ptr scorecard

Default construction Pass
Construct from raw pointer Pass

Copy construction Pass
Destruction Pass
Attach and detach Pass
Assign to same-type raw pointer Pass
Assign to same-type smart pointer Pass
Fetch the wrapped pointer get()
Access the wrapped object ->
Receive pointer via & release old
Release and receive pointer put()
Preserve and receive pointer addressof()
Return to empty state Pass
Comparison Pass
Accidental bypass Fail
Construct from other-type raw pointer Pass
Construct from other-type smart pointer Pass
Assign from other-type raw pointer Pass
Assign from other-type smart pointer Pass
Notes:

T must have a method of the form ULONG Release().

The T: :Release method must return nonzero if the object is still alive.

Next time, we’ll finish our tour of COM smart pointer classes by looking at C++/WinRT’s
com_ptr.

5/5

