
1/5

May 9, 2023

What are the duck-typing requirements of MFC IPTR?
devblogs.microsoft.com/oldnewthing/20230509-00

Raymond Chen

We continue our survey of duck-typing requirements of various C++ COM smart pointer
libraries by looking at MFC’s IPTR, running it through our standard tests.

https://devblogs.microsoft.com/oldnewthing/20230509-00/?p=108161

2/5

// Dummy implementations of AddRef and Release for

// testing purposes only. In real code, they would

// manage the object reference count.

struct Test

{

 void AddRef() {}

 void Release() {}

 Test* AddressOf() { return this; }

};

struct Other

{

 void AddRef() {}

 void Release() {}

};

// Pull in the smart pointer library

// (this changes based on library)

#include <afxole.h>

extern const GUID IID_Test;

extern const GUID IID_Other;

using TestPtr = IPTR(Test);

using OtherPtr = IPTR(Other)

void test()

{

 Test test;

 // Default construction

 TestPtr ptr;

 // Construction from raw pointer

 TestPtr ptr2(&test);

 // Copy construction

 TestPtr ptr3(ptr2);

 // Attaching and detaching

 auto p = ptr3.GetInterfacePtr();

 ptr3.Detach();

 ptr.Attach(p);

 // Assignment from same-type raw pointer

 ptr3 = &test;

 // Assignment from same-type smart pointer

 ptr3 = ptr;

 // Accessing the wrapped object

 // (this changes based on library)

 if (ptr.GetInterfacePtr() != &test) {

3/5

 std::terminate(); // oops

 }

 if (ptr->AddressOf() != &test) {

 std::terminate(); // oops

 }

 // Returning to empty state

 ptr3.Release(); // requires ptr3 be non-empty

 ptr3 = static_cast<Test*>(nullptr);

 ptr3.Attach(nullptr);

 // Receiving a new pointer

 // (this changes based on library)

 Test** out = &ptr3;

 // Bonus: Comparison.

 if (ptr == ptr2) {}

 if (ptr != ptr2) {}

 if (ptr < ptr2) {}

 // Litmus test: Accidentally bypassing the wrapper

 ptr->AddRef();

 ptr->Release();

 // Litmus test: Construction from other-type raw pointer

 Other other;

 TestPtr ptr4(&other);

 // Litmus test: Construction from other-type smart pointer

 OtherPtr optr;

 TestPtr ptr5(optr);

 // Litmus test: Assignment from other-type raw pointer

 ptr = &other;

 // Litmus test: Assignment from other-type smart pointer

 ptr = optr;

 // Destruction

}

The IPTR macro assumes that the IID that corresponds to the alleged interface is named
IID_Blah. We give it a dummy ID interface in the form of a reference to a variable that is
never defined. This ensures a linker error if the code ever tries to use that fake interface ID.

The IPTR.Detach method does not return the detached pointer. You have to fetch it yourself
via GetInterfacePtr() if you want to save it.

Returning the smart pointer to an empty state can be done in multiple ways.

4/5

The Release() method releases the wrapped pointer, but there must be a non-null
wrapped pointer in the first place. It is an error to call ptr3.Release() on an empty
ptr3.
You can use the assignment operator to assign a nullptr. However, there are multiple
assignment operators,¹ so you have to cast the nullptr to Test* to say, “I am
assigning a new pointer to be wrapped.”
A sneaky way to avoid the extra typing is to use the Attach() method to attach a null
pointer. The first parameter to Attach() is always a Test*, so there is no ambiguity in
passing just nullptr.

The only way to receive a new pointer is to use the & operator. This operator releases any
previous wrapped pointer before receiving the new one.

The IPTR fails the bonus comparison test, but not through any fault of the Test class. The
IPTR simply doesn’t support comparison at all, not even for COM interfaces.

The IPTR macro fails the “accidental bypass” litmus test, in the same way that _com_ptr_t
did. As with _com_ptr_t, there are two ways of releasing the object that are dangerously
similar:

ptr2.Release(); // good

ptr2->Release(); // bad

The same cautions apply.

The IPTR passes the other litmus tests: All of the attempts to convert or assign from another
type of smart pointer or raw pointer generate errors.

Okay, so here’s the scorecard for IPTR.

MFC IPTR scorecard

Default construction Pass

Construct from raw pointer Pass

Copy construction Pass

Destruction Pass

Attach and detach Pass

Assign to same-type raw pointer Pass

Assign to same-type smart pointer Pass

5/5

Fetch the wrapped pointer GetInterfacePtr()

Access the wrapped object ->

Receive pointer via & release old

Release and receive pointer &

Preserve and receive pointer N/A

Return to empty state Pass

Comparison Not supported

Accidental bypass Fail

Construct from other-type raw pointer Pass

Construct from other-type smart pointer Pass

Assign from other-type raw pointer Pass

Assign from other-type smart pointer Pass

Next time, we’ll look at ATL’s CComPtr.

¹ The other assignment operators accept CLSID and PCWSTR and create a new object
identifed by the CLSID or ProgId. Fortunately, it’s unlikely that you will assign one of these
things to a a COM smart pointer by mistake.

