
1/9

May 5, 2023

The case of the crash in a C++/WinRT coroutine:
Unpeeling the onion

devblogs.microsoft.com/oldnewthing/20230505-00

Raymond Chen

A customer had a mysterious crash in a C++/WinRT coroutine, and they were having trouble
identifying the cause. The stack of the crash looked like this:

https://devblogs.microsoft.com/oldnewthing/20230505-00/?p=108146

2/9

Contoso!winrt::impl::consume_Contoso_IWidgetWatcher<winrt::Contoso::IWidgetWatcher>::
NotifyChange+0x3

Contoso!winrt::Contoso::implementation::WidgetController::SaveWidget+0x16

Contoso!winrt::impl::produce<winrt::Contoso::implementation::WidgetController,winrt::
Contoso::IWidgetController>::SaveWidget+0x1d

Contoso!winrt::impl::consume_Contoso_IWidgetController<winrt::Contoso::
IWidgetController>::SaveWidget+0xd

Contoso!winrt::Contoso::implementation::Widget::OnSettingsChanged$_ResumeCoro$1+0x31f

Contoso!std::experimental::coroutine_handle<void>::resume+0xc

Contoso!winrt::impl::await_adapter<winrt::Windows::Foundation::IAsyncAction>::await_
suspend+0x15e

Contoso!winrt::Contoso::implementation::Widget::OnSettingsChanged$_ResumeCoro$1+0x11a

Contoso!winrt::Contoso::implementation::Widget::OnSettingsChanged$_InitCoro$2+0x6a

Contoso!winrt::Contoso::implementation::Widget::OnSettingsChanged+0x5c

Contoso!winrt::Windows::Foundation::TypedEventHandler<winrt::Contoso::Widget,winrt::
Windows::Foundation::IInspectable>::<lambda_a7902c7784a1de3d47473a11e43d997c>::
operator()+0x5b

Contoso!winrt::impl::delegate<winrt::Windows::Foundation::TypedEventHandler<winrt::
Contoso::Widget,winrt::Windows::Foundation::IInspectable>,<lambda_
a7902c7784a1de3d47473a11e43d997c> >::Invoke+0x6d

rpcrt4!Invoke+0x73

rpcrt4!Ndr64StubWorker+0xb8a

rpcrt4!NdrStubCall3+0xd3

combase!CStdStubBuffer_Invoke+0x6f

combase!InvokeStubWithExceptionPolicyAndTracing::__l6::<lambda_
c9f3956a20c9da92a64affc24fdd69ec>::operator()+0x22

combase!ObjectMethodExceptionHandlingAction<<lambda_c9f3956a20c9da92a64affc24fdd69ec>
>+0x4d

combase!InvokeStubWithExceptionPolicyAndTracing+0xe1

combase!DefaultStubInvoke+0x268

combase!SyncServerCall::StubInvoke+0x41

combase!StubInvoke+0xf6

combase!ServerCall::ContextInvoke+0x366

combase!ComInvokeWithLockAndIPID+0x9aa

combase!ThreadInvokeReturnHresult+0x17b

combase!ThreadInvoke+0x193

rpcrt4!DispatchToStubInCNoAvrf+0x22

rpcrt4!RPC_INTERFACE::DispatchToStubWorker+0x1b4

rpcrt4!RPC_INTERFACE::DispatchToStub+0xb3

rpcrt4!RPC_INTERFACE::DispatchToStubWithObject+0x188

rpcrt4!LRPC_SBINDING::DispatchToStubWithObject+0x23

rpcrt4!LRPC_SCALL::QueueOrDispatchCall+0x253

rpcrt4!LRPC_SCALL::HandleRequest+0x996

rpcrt4!LRPC_SASSOCIATION::HandleRequest+0x2c3

rpcrt4!LRPC_ADDRESS::HandleRequest+0x17c

rpcrt4!LRPC_ADDRESS::ProcessIO+0x939

rpcrt4!LrpcIoComplete+0x109

ntdll!TppAlpcpExecuteCallback+0x157

ntdll!TppWorkerThread+0x72c

kernel32!BaseThreadInitThunk+0x1d

ntdll!RtlUserThreadStart+0x28

3/9

Contoso!winrt::impl::consume_Contoso_IWidgetWatcher<winrt::Contoso::IWidgetWatcher>::
NotifyChange+0x3:

00007ffd`ab49749d mov rax,qword ptr [rcx] ds:00000000`00000000=????????????????

This is a big, ugly stack, but we can simplify it:

Contoso!winrt::impl::consume_IWidgetWatcher::NotifyChange+0x3

Contoso!winrt::WidgetController::SaveWidget+0x16

Contoso!winrt::impl::produce<IWidgetController>::SaveWidget+0x1d

Contoso!winrt::impl::consume_IWidgetController::SaveWidget+0xd

Contoso!winrt::Widget::OnSettingsChanged$_ResumeCoro$1+0x31f

Contoso!std::experimental::coroutine_handle<void>::resume+0xc

Contoso!winrt::impl::await_adapter::await_suspend+0x15e

Contoso!winrt::Widget::OnSettingsChanged$_ResumeCoro$1+0x11a

Contoso!winrt::Widget::OnSettingsChanged$_InitCoro$2+0x6a

Contoso!winrt::Widget::OnSettingsChanged+0x5c

Contoso!winrt::TypedEventHandler::<lambda_...>::operator()+0x5b

Contoso!winrt::impl::delegate::Invoke+0x6d

(external event machinery)

Reading from the bottom up, we start with a bunch of external event machinery, which led to
the invocation of an event handler, evidently the OnSettingsChanged handler.

This handler is a coroutine, and it awaited something, and then upon resumption it called the
WidgetController::SaveWidget method, which called WidgetWatcher::NotifyChange, but
it crashed trying to make that call because the widget watcher is null. (We know this because
rcx is null, and we’re trying to read its vtable.)

The customer’s OnSettingsChanged handler looked like this:

fire_and_forget Widget::OnSettingsChanged(

 const SettingsManager&, const IInspectable&)

{

 co_await ApplySettingsAsync();

 m_widgetController.SaveWidget(*this);

}

The customer saw this code and smacked their forehead. “Of course, the problem is that I
forgot to hold a strong reference to the widget across the co_await.”

winrt::fire_and_forget Widget::OnSettingsChanged(

 const winrt::SettingsManager&, const winrt::IInspectable&)

{

 auto lifetime = get_strong();

 co_await ApplySettingsAsync();

 m_widgetController.SaveWidget(*this);

}

But their fix didn’t help. The crashes kept coming.

4/9

Let’s look at that crash stack again:

Contoso!winrt::Widget::OnSettingChanged$_ResumeCoro$1+0x31f

Contoso!std::experimental::coroutine_handle<void>::resume+0xc

Contoso!winrt::impl::await_adapter::await_suspend+0x15e

Contoso!winrt::Widget::OnSettingChanged$_ResumeCoro$1+0x11a

Reading upward, the coroutine was executing, and then decided to co_await something.
The coroutine machinery called await_suspend, and the await_suspend immediately
resumed the coroutine, causing OnSettingChanged$_ResumeCoro$1 to be re-entered.

So the coroutine never really suspended. Adding a strong reference wouldn’t have helped
here, since the strong reference’s job is to keep the object alive across a suspension, which
hasn’t happened. (I mean, the strong reference is still required in the case where the
co_await does suspend. I’m just saying that this particular crash didn’t involve a
suspension.)

Another way to observe that there was no suspension is that the stack trace leads all the
way back to the external event machinery. We are still in the synchronous portion of the
event handler. Nothing has suspended yet.

I looked at how the event was registered:

struct Widget : WidgetT<Widget>

{

 // other constructor parameters elided for expository purposes

 Widget::Widget(const WidgetController& controller)

 : m_weakController{ controller }

 {

 m_SettingChangedRevoker =

 m_settingsWatcher.SettingChanged(winrt::auto_revoke,

 { this, &Widget::OnSettingChanged });

 }

private:

 fire_and_forget OnSettingChanged(

 const SettingsManager&, const IInspectable&);

 const weak_ref<WidgetController> m_weakWidgetController;

 const SettingsWatcher m_settingsWatcher;

 SettingsWatcher::SettingChanged_revoker m_SettingChangedRevoker;

 // other members elided for expository purposes

};

Notice that the event handler is registered with a raw this pointer.

5/9

Registering with a raw this pointer means that you are taking full responsibility for ensuring
that the object is alive at the time the event is received. This is manageable for events that
are raised synchronously (such as UI events), since you can make sure to unregister the
event handler from the thread that will raise the event, avoid the race condition where you
unregister the event handler while the handler is running (or is irrevocably committed to
running).

Thread 1 Thread 2

event triggered

handler()

 unregister handler

handler still running!

We can see from the stack that the SettingsWatcher object raises events from a
background thread, so a raw this capture is not safe. If the event is unregistered while a
callback is in progress (or is irrevocably committed to running), the handler will have the
object destructed out from under it (or possibly even have it destructed before it can execute
a single instruction).

In this case, the registration of the handler should be done with a weak reference.

 m_SettingChangedRevoker =

 m_settingsWatcher.SettingChanged(winrt::auto_revoke,

 { get_weak(), &Widget::OnSettingChanged });

The C++/WinRT weak reference event handler pattern goes like this:

auto strong = weak.get():

if (strong) { (strong->*handler)(); }

C++/WinRT tries to upgrade the weak reference to a strong reference, and if successful, it
calls the event handler with the strong reference active. When the handler returns, the strong
reference is released.¹

This particular race condition is between the event handler and the revocation of the event.
This particular object doesn’t revoke the event until it destructs, and the way the program
uses the Widget, we don’t expect it to be destroyed until the program shuts down, and
there’s no evidence that the program is shutting down.

The “object got destructed before your handler run” scenario also doesn’t seem to match the
crash dump:

6/9

0:019> ?? ((winrt::Contoso::implementation::WidgetController*) 0x00000262`1b9ce810)

struct winrt::Contoso::implementation::WidgetController * 0x00000262`1b9ce810

 +0x010 vtable : ...

 +0x018 vtable : ...

 +0x000 __VFN_table : 0x00007ffd`ab59d940

 +0x008 m_references : std::atomic<unsigned __int64>

 ...

 +0x0a0 m_widgetWatcher : winrt::Contoso::WidgetWatcher

0:019> ?? ((winrt::Contoso::implementation::WidgetController*) 0x00000262`1b9ce810)-
>m_references._Storage

struct std::_Atomic_padded<unsigned __int64>

 +0x000 _Value : 0x80000131`0e28d450

0:019> dps 0x80000131`0e28d450*2

00000262`1c51a8a0 00007ffd`ab5998d8 Contoso!winrt::impl::weak_ref<1,1>::`vftable'

00000262`1c51a8a8 00007ffd`ab5998b8 Contoso!winrt::impl::weak_source<1,1>::`vftable'

00000262`1c51a8b0 00000262`1b9ce820 // m_object - pointer to original object
(matches)

00000262`1c51a8b8 0000002e`00000006 // weak + strong references

The weak reference control block seems to be valid, and it shows a reasonable non-zero
number of strong references, so it doesn’t seem that we’re in the “Object destructed while
handler is running” scenario.

So we found another bug, but not the bug that caused this crash.

The crash is at the call to m_widgetWatcher.SaveWidget(), so let’s look at that
m_widgetWatcher.

0:019> ?? ((winrt::Contoso::implementation::WidgetController*) 0x00000262`1b9ce810)-
>m_widgetWatcher

struct winrt::Contoso::WidgetWatcher

 +0x000 m_ptr : 0x00000262`1b86ec60

0:019> dps 0x00000262`1b86ec60 L2

00000262`1b86ec60 00007ffd`ab5a1728
Contoso!winrt::impl::produce<WidgetWatcher,IWidgetWatcher>::`vftable'

00000262`1b86ec68 00000000`00000000

Wait a second, the crash dump says that we crashed because the m_widgetWatcher is null,
but in the dump, the m_widgetWatcher is non-null. This suggests to me that we encountered
a race condition, where the m_widgetWatcher was null at the time of the crash, but in the
time it took to create the crash dump, the value was updated.

This helped focus the next step of the investigation: Let’s look at the WidgetController and
how it initializes the WidgetWatcher.

https://devblogs.microsoft.com/oldnewthing/20121130-00/?p=5943

7/9

struct WidgetController : WidgetControllerT<WidgetController>

{

 // constructor parameters elided for expository purposes

 WidgetController(const WidgetWatcher& watcher) :

 m_widget{ make<Widget>(*this) },

 m_widgetWatcher{ watcher }

 {

 }

 void SaveWidget(const Widget&);

private:

 const Widget m_widget;

 const WidgetWatcher m_widgetWatcher;

 // other members elided for expository purposes

};

Now the story comes into focus.

The non-static data members of C++ objects are constructed in order of declaration in the
class.² In this case, we construct the Widget before we copy the WidgetWatcher.

If a setting change occurs immediately after the Widget is constructed, then we have a race
between the event callback thread (which will call back into the WidgetController) and the
construction of the WidgetController‘s m_widgetWatcher. If the event callback thread wins
the race, then it will see a not-yet-constructed m_widgetWatcher and crash.

That is the race condition that we hit. The event callback thread tried to use a not-yet-
constructed object.

Therefore, the final step of the fix is to force the m_widgetWatcher to construct first:

8/9

struct WidgetController : WidgetControllerT<WidgetController>

{

 // constructor parameters elided for expository purposes

 WidgetController(const WidgetWatcher& watcher) :

 m_widget{ make<Widget>(*this) },

 m_widgetWatcher{ watcher }

 {

 }

 void SaveWidget(const Widget&);

private:

 // Order of declaration is important:

 // WidgetWatcher must construct before the Widget,

 // because the Widget may call into the WidgetWatcher.

 const WidgetWatcher m_widgetWatcher;

 const Widget m_widget;

 // other members elided for expository purposes

};

This was a rather long investigation, with two red herrings! I don’t know whether you enjoyed
it, but you can’t get that time back now.

¹ Note that if the handler is a coroutine, the handler “returns” at the point the coroutine first
suspends, not when the coroutine runs to completion. That’s why we need the get_strong()
inside the coroutine body: To keep the object alive through to completion.

² Note that the order in which the initializers are given in the constructor are irrelevant. It is
the order of declaration in the class that controls the order of construction.

struct Example

{

 Example() : b{ 1 }, a{ 2 } {}

 Thing1 a;

 Thing2 b;

};

In this example class, the a member is constructed first, and then the b member is
constructed second. You might think that b is constructed first because it is listed first in the
constructor, but that’s not the case.

If construction occurred in order of initialization, and two constructors initialized the members
in different orders, then the destructor would be unable to follow the rule that objects are
destructed in the same order of construction, because the destructor doesn’t know which
constructor was used.³

9/9

³ I guess you could solve this problem by adding a hidden member variable that keeps track
of which order the members were constructed, but this adds runtime costs and would likely
be surprising to programmers that it’s possible that adding a constructor to a class, even one
that is never called, can change its size.

