
1/3

April 28, 2023

On the finer points of cancelling timers and wait objects
in Windows thread pool

devblogs.microsoft.com/oldnewthing/20230428-00

Raymond Chen

The Windows thread pool lets you create, among other things, timers and waits, and you can

cancel them, too.

There are some finer points here.

The way you cancel a timer is to call SetThreadpoolTimer or SetThreadpoolTimerEx

with a null pointer as the due time. And the way you cancel a wait is to call SetThreadpool‐

Wait or SetThreadpoolWaitEx with a null handle.

When you cancel a timer or wait, no future callbacks will be created, but existing ones are not

recalled. Therefore, there’s a race condition if you issue you your cancellation just after the

timer or wait has triggered: You cancelled it too late to prevent the callback from being

scheduled, and you can’t detect this race from your callback because the callback may not

have started running yet. This could be because the callback has been scheduled but hasn’t

yet been given a thread to run on yet. Or it could be that your callback was unluckily pre-

empted at its very first instruction.

Thread pool You

Object is signaled / timer is ready

Callback scheduled

 Cancel timer / wait

Thread assigned to callback

Callback runs

A timer or wait is created in the “unset” state. You put into the “set” state by calling one of the

Set... functions with a non-null due time or handle. You return it to the “unset” state by

calling the the Set... functions with a null due time or handle.

https://devblogs.microsoft.com/oldnewthing/20230428-00/?p=108110

2/3

When you call one of the Set...Ex functions, it returns a value that tells you whether a

callback was cancelled. But that’s only part of what you need to know in order to determine

whether a callback is on its way. You also need to know whether the timer or wait was

previously set.

Here’s a table of the possibilities:

Previous state Was callback pending Could callback be recalled Set returns…

Unset N/A N/A FALSE

Set No N/A TRUE

Set Yes Yes TRUE

Set Yes No FALSE

The last row is the interesting one: When you cancel the timer or wait object, the thread pool

tries to recall any pending callbacks, but sometimes a callback has already gone too far and

could not be recalled. For example, the callback could be already in progress. In that case, the

Set...Ex function returns FALSE to tell you that you’re not finished yet. You have to wait

for the callback to complete before everything is finally done.

The way you wait for the callback to complete is to call WaitForThreadpoolTimer‐

Callbacks or WaitForThreadpoolWaitCallbacks . It will wait for the completion of all

outstanding callbacks for the specified timer or wait. A callback is deemed to have completed

when it returns, or when it calls DissociateCurrentThreadFromCallback . We can add

this as another column to our table:

Previous
state

Was callback
pending

Could callback be
recalled

Set
returns… Wait returns…

Unset N/A N/A FALSE Immediately

Set No N/A TRUE Immediately

Set Yes Yes TRUE Immediately

Set Yes No FALSE After callback
completes

Fortunately, the WaitFor...Callbacks functions wait in exactly the case we need them to

wait.

3/3

We can now put this information to use: Suppose you have a thread pool timer or wait that

has been set, and you later realize that you don’t want to wait that long after all. What is the

pattern for safely accelerating the callback?

If we assume that the timer or wait is definitely set, then the Unset row is removed from

consideration, and that means that a FALSE return value from Set...Ex tells us that a

callback is in progress, or at least has proceeded past the point of no return. In that case, we

don’t need to accelerate the callback; it’s already on its way.

Otherwise, there was no callback in progress, so we need to make one. We can do that by

resetting the timer or wait callback with a timeout of zero (which means now).

if (SetThreadpoolTimerEx(timer, nullptr, 0, 0)) {

 FILETIME now = { 0, 0 };

 SetThreadpoolTimer(timer, &now, 0, 0);

}

if (SetThreadpoolWaitEx(wait, nullptr, nullptr, nullptr)) {

 FILETIME now = { 0, 0 };

 SetThreadpoolWait(wait, GetCurrentProcess(), &now);

}

In the case of making a wait callback run immediately, we have to give it a non-null handle,

although we don’t care what it is. We use the pseudo-handle to the process itself, which the

process will never observe as signaled. That way, the callback is made with the report that the

wait timed out.

