
1/3

April 6, 2023

An ignored exception can be misinterpreted as a hang,
particularly in coroutines

devblogs.microsoft.com/oldnewthing/20230406-00

Raymond Chen

Consider the following function:

void DoAwesomeThings()

{

 try {

 Step1();

 Step2();

 Step3();

 }

 catch (...)

 {

 }

}

If an exception occurs in Step2() , then from the point of view of DoAwesomeThings() , it

will appear to have hung, since control never returned.

void DoAwesomeThings()

{

 try {

 Step1();

 printf("About to call Step2!\n");

 Step2();

 printf("Step2 returned!\n"); // never executes!

 Step3();

 }

 catch (...)

 {

 }

}

Now, one difference is that if you break into the debugger, you’ll find that there is no call to

Step2() anywhere on the stack, and that may be a clue that the function didn’t actually

hang. But if all you have is log file, your log file just ends at

About to call Step2!

https://devblogs.microsoft.com/oldnewthing/20230406-00/?p=108023

2/3

and if you didn’t think about the catch (...) , you would conclude that Step2() is hung.

Okay, so that was pretty obvious. I mean, who would make this kind of misinterpretation?

Let’s make it a little less obvious: Let’s put it in a coroutine.

winrt::IAsyncAction DoAwesomeThings()

{

 Step1();

 Step2();

 Step3();

}

Recall that the coroutine transformation, among other things, wraps the entire coroutine

body inside a try...catch :

winrt::IAsyncAction DoAwesomeThings()

{

 co_await promise.initial_suspend();

 try {

 Step1();

 printf("About to call Step2!\n");

 Step2();

 printf("Step2 returned!\n"); // never executes!

 Step3();

 } catch (...) {

 promise.unhandled_exception();

 }

 co_await promise.final_suspend();

}

This time, when Step2() throws an exception, it is caught by the coroutine infrastructure

which calls the promise’s unhandled_exception() . The unhandled_exception()

function typically saves the exception somewhere, so that it can be rethrown when somebody

does a co_await on the coroutine return object.

In this case, what happens is that the exception is saved in the IAsyncAction object, ready

to be re-thrown by the co_await in co_await DoAwesomeThings() .

But say you never do that co_await .

void BeReallyAwesome()

{

 DoAwesomeThings(); // no co_await

 DoMoreAwesomeThings();

}

If you look at the log file, you see the “About to call Step2!” and no “Step2 returned!”. And

since you never did a co_await , the exception that was saved in the IAsyncAction is

discarded without ever having a chance to be rethrown. Result: It looks like the coroutine

3/3

simply hung.

Note that each coroutine return type makes its own decision about how unhandled

exceptions are dealt with, and what to do if an exception never gets rethrown. Here’s a table

of some of the ones you’re like to encounter in Windows code.

Coroutine type
Unhandled
exception co_await

Unobserved
exception

winrt::IAsync... Save for later Rethrow Discarded

winrt::fire_and_forget Fail fast N/A N/A

Concurrency::task Save for later Rethrow Fail fast

For the last two popular Windows coroutine types, the exception gets reported eventually.

The fire_and_forget crashes the process immediately, and Concurrency::task

rethrows the exception (if observed) or crashes the process (if never observed).

It’s the IAsync... that can cause exceptions to mysteriously vanish: If you simply discard

them without every performing a co_await , then you never learn of any unhandled

exceptions that occurred.

They just disappear.

We’ll apply this knowledge next time.

