
1/3

April 3, 2023

C++17 creates a practical use of the backward array
index operator

devblogs.microsoft.com/oldnewthing/20230403-00

Raymond Chen

It is well-known that if a is a pointer or array and i is an integer, then a[i] and i[a]

are equivalent in C and C++, resulting in hilarity like

void haha()

{

 int a[5];

 for (i = 0; i < 5; i++) {

 i[a] = 42;

 }

}

There is very little practical use for this equivalency, aside from pranking people.¹

And then C++17 happened.

One of the changes to the core language in C++17 was stronger order of evaluation rules,

formally known as sequencing. We previously encountered this when studying a crash that

seemed to be on a std::move operation.

One of the operations that received a defined order of evaluation is the subscript operator.

Starting in C++17, a[b] always evaluates a before evaluating b .

https://devblogs.microsoft.com/oldnewthing/20230403-00/?p=108005
https://devblogs.microsoft.com/oldnewthing/20220120-00/?p=106178

2/3

int* p;

int index();

auto test()

{

 return p[index()];

}

// Compiled as C++14

 sub rsp, 40

 call index ; call index first

 movsxd rcx, rax

 mov rax, p ; then fetch p

 mov eax, [rax + rcx * 4]

 add rsp, 40

 ret

// Compiled as c++17

 push rbx

 sub rsp, 32

 mov rbx, p ; fetch p first

 call index ; then call index

 movsxd rcx, rax

 mov eax, [rbx + rcx * 4]

 add rsp, 32

 pop rbx

 ret

Therefore, if your evaluation of the index may have a side effect on the evaluation of the

pointer, you can flip the order to force the index to be calculated first.

auto test()

{

 return index()[p];

}

Astound your friends! Confuse your enemies!

Bonus chatter: Though I wouldn’t rely on this yet. clang implements this correctly, but

msvc (v19) and gcc (v13) get the order wrong and still load p before calling index . (By

comparison, icc also gets the order wrong, but the other way: It always loads p last.)

¹ Another practical use is to bypass any possible overloading of the [] operator, as noted in

Chapter 14 of Imperfect C++:

#define ARRAYSIZE(a) (sizeof(a) / sizeof(0[a]))

By flipping the order in 0[a] , this bypasses any possible a[] overloaded.

https://gcc.godbolt.org/z/s11KhnKcn
http://www.imperfectcplusplus.com/

3/3

std::vector<int> v(5);

int size = ARRAYSIZE(v); // compiler error

However, it isn’t foolproof. You just need to create a more clever fool: If v is a pointer or an

object convertible to a pointer, then that pointer will happily go inside the 0[...] .

struct Funny

{

 operator int*() { return oops; }

 int oops[5];

 int extra;

};

Funny f;

int size1 = ARRAYSIZE(f); // oops: 6

int* p = f;

int size2 = ARRAYSIZE(p); // oops: 1

Fortunately, you don’t need any macro tricks. You can let C++ constexpr functions do the

work for you:

template<typename T, std::size_t N>

constexpr std::size_t array_size(T(&)[N]) { return N; }

