
1/3

March 15, 2023

How can I create a git feature branch that can merge into
multiple other branches?

devblogs.microsoft.com/oldnewthing/20230315-00

Raymond Chen

A customer had a git repo that had two branches, let’s call them dev_apple and

dev_banana . These branches were very similar, differing only in a choice of fruit. The

customer wanted to create a new branch, call it feature , in which they could develop a

feature that was not fruit-dependent. When finished, they could then create two pull

requests, one to merge feature into dev_apple and another to merge feature into

dev_banana . Is this possible?

Yes, it’s possible, and we already explored how it works as a side effect of an earlier

investigation into merging as a substitute for cherry-picking.

Suppose the repo looks like this:

 apple

red

 A1 dev_apple

fruit

red

M

 B1 dev_banana

 banana

red

At some starting commit M , the code said “fruit red”. From the commit, the dev_apple

branch commited a change to change the code to read “apple red”. Meanwhile, from the same

starting commit, the dev_banana branch commit a change to change the code to “banana

red”.

https://devblogs.microsoft.com/oldnewthing/20230315-00/?p=107940
https://devblogs.microsoft.com/oldnewthing/20180314-00/?p=98235

2/3

Your goal is to create some branch feature that changes red to blue , and then merge

that branch into both the dev_apple and dev_banana branches. The expected result of

the merge is that red changes to blue , but the fruit in each branch remains unchanged.

Merging into dev_apple produces “apple blue”, and merging into dev_banana produces

“banana blue”.

You already know how to do this: Create a patch branch that starts at the common ancestor

of the two dev branches, which in our example is the initial commit M .

 apple

red

 A1 dev_apple

fruit

red

 fruit

blue

M F feature

 B1 dev_banana

 banana

red

In this scenario, the patch branch is what we’re calling the feature branch. In that branch,

we can make a commit that makes the changes we want to apply to both of the dev

branches, namely, changing the code to “fruit blue”.

Once we’re happy with the work we’ve done in the feature branch (which could consists of

several commits), we can create pull requests to merge the changes into both of the dev

branches.

 apple

red

 apple

blue

 A1 A2 dev_apple

fruit

red

 fruit

blue

M F feature

3/3

 B1 B2 dev_banana

 banana

red

 banana

blue

The result of these merges is that the dev_apple branch says “apple blue” and the

dev_banana branch says “banana blue”, as desired.

Note that this trick assumes that the most recent common ancestor of the dev_apple and

dev_banana branches is not too old, or at least not so old that the code you want to change

isn’t even present. In our case, we’re in good shape because the common ancestor commit M

does have the word “red” that we want to change to “blue”.

The customer was satisfied with this recommendation. My guess is that the split into

dev_apple and dev_banana was relatively recent and temporary, and the expectation was

that the two dev branches would eventually merge back together once the fruit discrepancy

was resolved.

