
1/3

February 20, 2023

The case of the mysterious "out of bounds" error from
CreateUri and memmove

devblogs.microsoft.com/oldnewthing/20230220-00

Raymond Chen

A customer was trying to understand why their program was crashing with an E_BOUNDS

error in what appears to be a call to CreateUri .

combase!RoOriginateErrorW+0x50

wincorlib!Platform::Details::ReCreateFromException+0x40

contoso!`__abi_translateCurrentException'::`1'::catch$0+0x10

contoso!memmove+0x217f4

contoso!Windows::Foundation::IUriRuntimeClassFactory::CreateUri+0x44

contoso!Contoso::DashboardView::DashboardView_obj1_Bindings::Update_ViewModel_Layout_G

contoso!Contoso::DashboardView::DashboardView_obj1_Bindings::Update_ViewModel_Layout+0

contoso!Contoso::DashboardView::DashboardView_obj1_Bindings::PropertyChanged+0x1134

contoso!XamlBindingInfo::XamlBindingTrackingBase::PropertyChanged+0x30

From the stack, it looks like memmove threw a E_BOUNDS C++/CX exception, which doesn’t

make sense. Even more mysteriously, the memmove was called from CreateUri , but their

DashboardView doesn’t manipulate URIs in any obvious way. It’s just a stack trace of

nonsense.

Let’s try to unwind the nonsense.

As for the mysterious memmove , notice that the offset is 0x217f4 . It’s unlikely that the

memmove function is over 100KB in size. Let’s see what’s really going on there. This is just

some code that has probably been shunted into a rarely-used code page far, far away from the

rest of the code, and the nearest symbol to it happens to be memmove .

 xor ecx,ecx

 call contoso!__abi_translateCurrentException

 int 3 ; memmove+0x217f4

Yup, this is an exception rethrow. Since exceptions are rare, profile-guided optimization puts

all the exception-handling nonsense into faraway pages so that they don’t consume valuable

space in the hot code pages.

https://devblogs.microsoft.com/oldnewthing/20230220-00/?p=107848

2/3

So why is CreateUri throwing an “out of bounds” exception?

Well, are you sure it’s really CreateUri ?

I looked a frame higher on the stack. “Why is data binding calling CreateUri ?”

The data binding code is autogenerated by the XAML compiler; it’s not checked into the

source tree. Instead of trying to figure out how to build their project (so I can extract the

autogenerated file), maybe I can infer what’s going on from the source.

One basic assumption that you make about code in general is that people who write code are

doing the best they can, rather than being sadists. This means that function names will

generally be descriptive of what they do, variable names will generally be descriptive of what

they represent, and so on. So when I see a class called DashboardView_obj1_Bindings ,

I’m going to assume that this class is for dealing with the bindings of some object in

DashboardView, and since it has a method called Update_ViewModel_Layout_Groups , it

probably has something to do with updating the binding of something whose names involve

the words ViewModel , Layout , and Groups .

I looked at DashboardView.xaml and searched for the word ViewModel in elements that

appeared to be involved with binding.

<ContentControl

 Grid.Row="0"

 x:Name="TogglesGroup"

 IsTabStop="False"

 Width="360"

 Content="{x:Bind ViewModel.Layout.Groups[0], Mode=OneWay}"

 ContentTemplateSelector="{StaticResource DashboardGroupTemplateSelector}"/>

Now, this wasn’t the first use of x:Bind in the XAML markup, so that doesn’t line up with

obj1 , but the other parts do line up (the Layout and Groups), so I chalked this up to

“Maybe the XAML compiler generates bindings in some order other than the order they

appear in the markup.”

How could this binding raise an “out of bounds” exception? Well, there’s a subscript

operation, so maybe the Groups collection is empty.

I looked at the Update_ViewModel_Layout_Groups method to see if that theory lined

up.

3/3

Update_ViewModel_Layout_Groups:

 test rdx,rdx

 je ...

 mov qword ptr [rsp+8],rbx

 mov qword ptr [rsp+18h],rbp

 push rsi

 push rdi

 push r14

 sub rsp,20h

 mov rbp,rdx

 mov rsi,rcx

 test r8d,0C0000001h

 je ...

 xor edx,edx

 mov rcx,rbp

 call contoso!Windows::Foundation::IUriRuntimeClassFactory::CreateUri

The function starts with a shrink-wrapped early-out if the first parameter is zero. (This is a

C++ method, so rcx contains this and rdx contains the first formal parameter.) I don’t

know how binding works, but presumably this is just a binding thing.

If the parameter is nonzero, then we build a proper stack frame, test some bits in the third

parameter, and if they’re set, we call, um, CreateUri with nullptr ? That makes no

sense. The XAML isn’t asking for a URI, and why is this code trying to create a URI from an

empty string?

But then you realize that you’ve been faked out by COMDAT folding. The this parameter

for the call to CreateUri is supposed to be the IUriRuntimeClassFactory , but that’s not

what we’re passing; we’re passing the first formal parameter.

Really, this is a call to IVector::GetAt , and the parameter is zero, indicating that we want

the object at index zero. The functions IVector::GetAt and CreateUri were folded

because they happen to be byte-for-byte identical. They are both “Call the method at index 6

in the vtable with one parameter.” For IUriRuntimeClassFactory , that method is

CreateUri and the parameter is a string. For IVector that method is GetAt and the

parameter is an index.

With this explanation, the customer realized that they did have an outstanding bug that said,

“If our settings file is corrupted, we end up with no groups,” and this bug is likely an alternate

manifestation of that bug.

