
1/5

February 17, 2023

What happens if you co_await a std::future, and why is it
a bad idea?

devblogs.microsoft.com/oldnewthing/20230217-00

Raymond Chen

The C++ standard library introduced std::future in C++11, along with various functions

and types that produce futures: std::async , std::packaged_task , and

std::promise . The only way to known when the result of a std::future is ready is to

poll for it, or simply block until the result is ready.

When the Visual C++ compiler implemented experimental coroutine support, it added the

ability to co_await a std::future : If you do that, the coroutine suspends until the

std::future produces a result, and the result of the std::future becomes the result of

the co_await .

That sounds convenient.

A customer reported that sometimes their program would crash with an out-of-memory

error. They sent us some of the crash dumps they received. The crash dumps showed that

their program had created around 2000 threads before finally succumbing. And most of the

threads were waiting on a condition variable.

ntdll!ZwWaitForAlertByThreadId+0x14

ntdll!RtlSleepConditionVariableSRW+0x137

KERNELBASE!SleepConditionVariableSRW+0x33

msvcp_win!Concurrency::details::stl_condition_variable_win7::wait_for+0x15

msvcp_win!Concurrency::details::stl_condition_variable_win7::wait+0x19

msvcp_win!_Cnd_wait+0x2a

contoso!std::condition_variable::wait+0x10

contoso!std::_Associated_state<winrt::hstring>::_Wait+0x3b

contoso!std::_State_manager<winrt::hstring>::wait+0x42

contoso!std::experimental::_Future_awaiter<winrt::hstrint>::await_suspend::__l2::
<lambda_5f42a2a4a1d632a6517852fe05159fc3>::operator()+0x45

contoso!std::invoke+0x45

contoso!std::thread::_Invoke<std::tuple<<lambda_5f42a2a4a1d632a6517852fe05159fc3>
>,0>+0x53

ucrtbase!thread_start<unsigned int (__cdecl*)(void *),1>+0x93

KERNEL32!BaseThreadInitThunk+0x14

ntdll!RtlUserThreadStart+0x28

https://devblogs.microsoft.com/oldnewthing/20230217-00/?p=107842
https://devblogs.microsoft.com/oldnewthing/20050729-14/?p=34773

2/5

From the function names on the stack, we can pull out that this code is waiting for a

std::future to become ready. (Lots of the names are strong hints, but the giveaway is

_Future_awaiter .)

Let’s look at how operator co_await is implemented for std::future :

template <class _Ty>

struct _Future_awaiter {

 future<_Ty>& _Fut;

 bool await_ready() const {

 return _Fut._Is_ready();

 }

 void await_suspend(

 experimental::coroutine_handle<> _ResumeCb) {

 // TRANSITION, change to .then if and when future gets .then

 thread _WaitingThread(

 [&_Fut = _Fut, _ResumeCb]() mutable {

 _Fut.wait();

 _ResumeCb();

 });

 _WaitingThread.detach();

 }

 decltype(auto) await_resume() {

 return _Fut.get();

 }

};

To co_await a std::future , the code first checks if the value is already set. If not, then

we create a thread and have the thread call future.wait() , which is a blocking wait. When

the wait is satisfied, the coroutine resumes.

The stack is consistent with our analysis. We are on a dedicated thread running the lambda

inside await_suspend , and that lambda is waiting for the std::future to produce the

result.

Each co_await of a std::future burns a thread. Checking the customer’s code showed

that there’s a std::future<winrt::hstring> that represents some calculation. The

calculation itself requires asynchronous work, so each time somebody asks for the value to be

calculated, a new std::future is created to represent the calculation, and the caller then

co_await s for the result of the calculation.

What happened is that the calculation for some reason is taking a long time, and a lot of

requests have piled up. Under normal conditions, stackless coroutines do not consume a

thread while they are suspended; they just sign up to be resumed when the thing they are

awaiting finally produced a result. But std::future has no way to register a way to be

3/5

called back when the result is ready. The only way to find out is to wait for it, and that

consumes a thread. (That’s what the “TRANSITION” comment is trying to say: When it

becomes possible to register a callback for the readiness of a std::future , we should

switch to it.)

The program is using std::promise as an implementation of a task completion source,

unaware that the implementation is very expensive, burning a thread for each outstanding

co_await . We advised the customer to switch to something lighter weight, such as the task

completion source we developed as part of our study of coroutines.

Or you can build your own quick-and-dirty task completion source that has the limitation

that it doesn’t support exceptions. (Because I’m lazy.) For this customer’s purpose, that may

be sufficient.

https://devblogs.microsoft.com/oldnewthing/20210323-00/?p=104987

4/5

template<typename T>

struct qd_completion_source

{

 void set_result(T value) {

 result = std::move(value);

 SetEvent(event.get());

 }

 auto resume_when_ready() {

 return winrt::resume_on_signal(event.get());

 }

 T& get_result() { return *result; }

private:

 std::optional<T> result;

 winrt::handle event = winrt::check_pointer(CreateEvent(nullptr, TRUE, FALSE,
nullptr));

}

// Produce the qd_completion_source

std::shared_ptr<qd_completion_source<int>>

StartSomething()

{

 auto source = std::make_shared<

 qd_completion_source<int>>();

 [](auto source) -> winrt::fire_and_forget {

 co_await step1();

 co_await step2();

 source.set_result(co_await step3());

 }(source);

 return source;

}

// Consume the qd_completion_source

winrt::fire_and_forget GetSomethingResult()

{

 auto source = StartSomething();

 co_await source->resume_when_ready();

 auto result = source->get_result();

}

When the result is ready, our quick-and-dirty completion source saves the answer in the

std::optional and then signals the event. To resume when the result is ready, we resume

when the event is set.

5/5

If you want to be awaitable more than once, you can return a copy of the result from

await_resume rather than moving the result to the caller.

Like I said, this is a quick-and-dirty version. It still uses a kernel object to synchronize

between the producer and consumer, but even so, a kernel event is far lighter than an entire

thread! I started writing a version that used coroutine_handle<> but realized that I

already did that.

https://devblogs.microsoft.com/oldnewthing/20210323-00/?p=104987

