
1/2

February 15, 2023

What are the potentially-erroneous results if you don’t
pass NULL as the lpNumberOfBytesRead when issuing
overlapped I/O?

devblogs.microsoft.com/oldnewthing/20230215-00

Raymond Chen

The documentation for many I/O functions that read or write bytes recommend that you pass

NULL as the lpNumberOfBytesRead parameter when issuing overlapped I/O to avoid

“potentially erroneous results”. What are these potentially erroneous results the

documentation is trying to warn against?

For the purpose of this discussion, let’s use ReadFile as our example, even though the

same argument applies to WriteFile , WSASend , and other functions which follow the

same pattern.

The race condition here is a race between the code that calls ReadFile and the code that

handles the asynchronous completion. If the variable passed as the output for ReadFile ‘s

lpNumberOfBytesRead parameter is the same variable used as the output for Get‐

OverlappedResult ‘s lpNumberOfBytesTransferred parameter, then there is a race

because the completion might run concurrently with the exit out of ReadFile .

Thread 1 Thread 2

ReadFile(..., &byteCount, ...);

ReadFile begins

 I/O initiated asynchronously

 I/O completes asynchronously

 GetOverlappedResult(..., &byteCount,
...)

 GetOverlappedResult sets byteCount =
result

 set byteCount = 0

https://devblogs.microsoft.com/oldnewthing/20230215-00/?p=107832

2/2

 SetLastError(ERROR_IO_PENDING);

 return FALSE;

If the I/O completes very quickly, then the completion routine can run before ReadFile

returns. And then when ReadFile tries to report the fact that the I/O was initiated

asynchronously, it overwrites the byteCount that the completion routine had calculated.

So it’s okay to pass a non-null lpNumberOfBytesRead to ReadFile , even when issuing

asynchronous I/O, provided that you do so into a different variable from the one that the

completion routine uses.

Normally, however, there’s no reason to pass a non-null lpNumberOfBytesRead because

the result of the operation is going to be handled by the completion function. But there’s a

case where it is advantageous to use a non-null value, and that’s where you have used Set‐

FileCompletionNotificationModes to configure the handle as FILE_SKIP_

COMPLETION_PORT_ON_SUCCESS . In that case, a synchronous completion does not queue

a call to the completion function on the I/O completion thread. Instead, the code that called

ReadFile is expected to deal with the synchronous completion inline. And one of the things

it probably wants to know is how many bytes were read, so it would normally call Get‐

OverlappedResult to find out. You can avoid that extra call to GetOverlappedResult by

passing a non-null pointer to ReadFile so that in the case of a synchronous completion,

you have your answer immediately.

This is admittedly a micro-optimization. One of my colleagues was not aware of this trick and

just followed the guidance in the documentation by passing NULL and calling Get‐

OverlappedResult , and he says that his code can still stream data at 100Gbps over the

network despite doing things “inefficiently”.

So maybe you’re better off not knowing and just following the simple rule of “Use NULL

when issuing asynchronous I/O.” It’s easier to explain and easier to remember.

