
1/4

February 2, 2023

Inside C++/WinRT: Coroutine completions: Avoiding
reentrant completion

devblogs.microsoft.com/oldnewthing/20230202-00

Raymond Chen

If a Windows Runtime asynchronous operation has already completed at the point the

Completed delegate is assigned, the implementation is permitted to invoke the delegate

before returning from the assignment.

The way we have set things up so far, it means that the awaiting an already-completed

Windows Runtime asynchronous operation results in a chain of calls:

MyAwesomeCoroutine::DoSomethingAsync$Resu

coroutine_handle<>::resume

resume_apartment

disconnect_aware_handler::Complete

Provider::FireCompletion

Provider::put_Completed

IAsyncOperation::put_Completed

await_adapter::await_suspend

MyAwesomeCoroutine::DoSomethingAsync$Resu

All those stack frames between the two MyAwesomeCoroutine::DoSomethingAsync$Resu

frames are unnecessary, and if you are co_await ‘ing in a loop, the stack usage accumulates

and can result in unexpected stack exhaustion.

What we can do is detect that the completion handler is running before put_Completed has

returned, and in that case, we merely remember that the coroutine needs to resume, but

without actually resuming it immediately. We allow execution to unwind back to await_

suspend and then return false to tell the coroutine infrastructure to resume the

coroutine when it unwinds.

https://devblogs.microsoft.com/oldnewthing/20230202-00/?p=107779

2/4

template<typename Awaiter>

struct disconnect_aware_handler

{

 〚 ... 〛

 void Complete()

 {

 if (m_awaiter->suspending

 .exchange(false, std::memory_order_release))

 {

 // resumption has been deferred to await_suspend

 m_handle = nullptr;

 }

 else

 {

 resume_apartment(m_context.context,

 std::exchange(m_handle, {}),

 &m_awaiter->failure);

 }

 }

};

If the awaiter says that it’s still suspending, then don’t resume immediately. Instead, reset the

suspending to false to tell await_suspend to cancel the suspension.

template<typename Async>

struct await_adapter

{

 await_adapter(Async const& async) : async(async) { }

 Async const& async;

 int32_t failure = 0;

 std::atomic<bool> suspending = true;

 〚 ... 〛

 auto await_suspend(coroutine_handle<> handle) const

 {

 // auto extend_lifetime = async;

 async.Completed(

 disconnect_aware_handler(this, handle));

 return suspending.exchange(false, std::memory_order_acquire);

 }

 〚 ... 〛

};

The other half of the communication is in the await_adapter ‘s await_suspend

method. After setting the Completed handler, we reset suspending to false , and

return the previous value. The previous value is true if the completion handler hasn’t run

yet, and returning true from await_suspend allows the suspension to proceed. But if

3/4

the completion handler has already run, then the previous value is false , and returning

handler hasn’t run yet, and returning false from await_suspend tells the coroutine

infrastructure to abandon the suspension and resume the coroutine.

Note that we use atomic operations on both sides, because the completion handler might run

on another thread and race against await_suspend . In particular, we need to watch out

for the case where the completion handler is called immediately after await_suspend sets

the Completed property and checks the suspending variable, but before it returns. In

that case, we need to resume the coroutine immediately from the completion handler,

because the decision to allow the coroutine to suspend has already been made.

The atomic operations use release semantics on the publishing side and acquire semantics on

the consumption side so that any changes to objects immediately before completion are

visible when the coroutine resumes.

Now that we defer the resumption of the coroutine until after async.Completed()

returns, we don’t need to extend its lifetime to protect against premature resumption: We

never resume the coroutine while async.Completed() is still running.

As of this writing, C++/WinRT still supports Visual C++’s experimental coroutine support.

Older versions of that coroutine support have a code generation bug (which I noted some

time ago is fixed in versions 16.11 and 17.0), so we need to work around that. The way to

detect the experimental coroutine support is to check for the preprocessor symbol

_RESUMABLE_FUNCTIONS_SUPPORTED :

template<typename Async>

struct await_adapter

{

 〚 ... 〛

 auto await_suspend(coroutine_handle<> handle) const

 {

 async.Completed(

 disconnect_aware_handler(this, handle));

#ifdef _RESUMABLE_FUNCTIONS_SUPPORTED

 if (!suspending.exchange(false, std::memory_order_acquire))

 {

 handle.resume();

 }

#else

 return suspending.exchange(false, std::memory_order_acquire);

#endif

 }

 〚 ... 〛

};

https://devblogs.microsoft.com/oldnewthing/20220930-00/?p=107233
https://devblogs.microsoft.com/cppblog/cpp20-coroutine-improvements-in-visual-studio-2019-version-16-11/

4/4

If we are being compiled with experimental coroutine support, then we avoid the code

generation bug by resuming the handle explicitly rather than returning a bool . This does

consume a little bit or stack, but not as much as before.

Bonus chatter: The workaround is used if experimental coroutine support is detected,

regardless of the Visual C++ compiler version. That’s because the experimental coroutines

are all ABI compatible, and I don’t want to take the risk of an ODR violation if people link

together object files compiled with different versions of experimental coroutine support.

Visual C++ took an ABI breaking change for standard coroutines, so C++/WinRT uses that as

its own signal to switch to the bool version of await_suspend . That way, there won’t be

any ODR violation in C++/WinRT caused by linking together object files with experimental

and standard coroutines: If you try, you get a mismatch from MSVC for _COROUTINE_ABI .

Combining experimental and standard coroutines never worked anyway, and we rely on the

compiler to check for us.

https://devblogs.microsoft.com/oldnewthing/20211007-00/?p=105777

