
1/5

February 1, 2023

Inside C++/WinRT: Coroutine completion handlers:
Disconnection

devblogs.microsoft.com/oldnewthing/20230201-00

Raymond Chen

C++/WinRT relies on the Completed delegate to tell it when a Windows Runtime

asynchronous operation is complete. However, it’s possible that the IAsyncAction or

IAsyncOperation provider tears itself down without ever calling the Completed handler.

This typically happens when the provider is running in another process that crashes (or at

least disconnects from you). It never calls its completion handler, and the coroutine simple

gets leaked.

Here’s what you see in the debugger:

https://devblogs.microsoft.com/oldnewthing/20230201-00/?p=107772
https://devblogs.microsoft.com/oldnewthing/20191126-00/?p=103140

2/5

contoso!winrt::impl::implements_delegate<AsyncActionCompletedHandler,lambda_xxxx>::Rel

combase!<lambda_yyy>::operator()+0xd7

combase!ObjectMethodExceptionHandlingAction<<lambda_yyy> >+0xe

combase!CStdIdentity::ReleaseCtrlUnk+0x64

combase!CStdMarshal::DisconnectWorker_ReleasesLock+0x6e7

combase!CStdMarshal::DisconnectAndReleaseWorker_ReleasesLock+0x35

combase!CStdMarshal::DisconnectForRundownIfAppropriate+0xc9

combase!CRemoteUnknown::RundownOidWorker+0x241

combase!CRemoteUnknown::RundownOid+0x65

RPCRT4!Invoke+0x73

RPCRT4!NdrStubCall2+0x3db

RPCRT4!NdrStubCall3+0xee

combase!CStdStubBuffer_Invoke+0x6f

combase!InvokeStubWithExceptionPolicyAndTracing::__l6::<lambda_zzz>::operator()+0x22

combase!ObjectMethodExceptionHandlingAction<<lambda_zzz> >+0x4d

combase!InvokeStubWithExceptionPolicyAndTracing+0xe1

combase!DefaultStubInvoke+0x268

combase!SyncServerCall::StubInvoke+0x41

combase!StubInvoke+0x303

combase!ServerCall::ContextInvoke+0x517

combase!ComInvokeWithLockAndIPID+0x9a9

combase!ThreadInvokeReturnHresult+0x17b

combase!ThreadInvoke+0x193

RPCRT4!DispatchToStubInCNoAvrf+0x22

RPCRT4!RPC_INTERFACE::DispatchToStubWorker+0x1b4

RPCRT4!RPC_INTERFACE::DispatchToStub+0xb3

RPCRT4!RPC_INTERFACE::DispatchToStubWithObject+0x188

RPCRT4!LRPC_SBINDING::DispatchToStubWithObject+0x23

RPCRT4!LRPC_SCALL::DispatchRequest+0x14c

RPCRT4!LRPC_SCALL::QueueOrDispatchCall+0x253

RPCRT4!LRPC_SCALL::HandleRequest+0x996

RPCRT4!LRPC_SASSOCIATION::HandleRequest+0x2c3

RPCRT4!LRPC_ADDRESS::HandleRequest+0x17c

RPCRT4!LRPC_ADDRESS::ProcessIO+0x939

RPCRT4!LrpcIoComplete+0x109

ntdll!TppAlpcpExecuteCallback+0x157

ntdll!TppWorkerThread+0x72c

KERNEL32!BaseThreadInitThunk+0x1d

ntdll!RtlUserThreadStart+0x28

The way we address this is to have the completion handler detect that it was never invoked. If

that happens, then it simply invokes itself. On resumption, the coroutine will call

GetResults() on the asynchronous operation, and that will throw the appropriate RPC

error.

Keeping track of whether the handler was invoked requires a custom destructor, so we’ll

convert the lambda to a C++ class first, so that we can add a destructor. This conversion is

mechanical.

3/5

// Original lambda

[

 handle,

 this,

 context = resume_apartment_context()

](auto&& ...)

{

 resume_apartment(context.context, handle,

 &failure);

});

// Converted to explicit class

template<typename Awaiter>

struct disconnect_aware_handler

{

 disconnect_aware_handler(Awaiter* awaiter,

 coroutine_handle<> handle) noexcept

 m_awaiter(awaiter), m_handle(handle) {}

 template<typename...Args>

 void operator()(Args&&...)

 {

 resume_apartment(m_context.context, m_handle,

 &m_awaiter->failure);

 }

private:

 Awaiter* m_awaiter;

 coroutine_handle<> m_handle;

 resume_apartment_context m_context;

};

template<typename Async>

struct await_adapter

{

 〚 ... 〛

 void await_suspend(coroutine_handle<> handle) const

 {

 auto extend_lifetime = async;

 async.Completed(

 disconnect_aware_handler(this, handle));

 }

 〚 ... 〛

};

Okay, now we can add a destructor that calls the operator() if it had never been called.

We’ll factor the body into a method Complete() and use the null-ness of the m_handle to

tell us whether the operator has been invoked yet.

4/5

template<typename Awaiter>

struct disconnect_aware_handler

{

 disconnect_aware_handler(Awaiter* awaiter,

 coroutine_handle<> handle) noexcept

 m_awaiter(awaiter), m_handle(handle) {}

 ~disconnect_aware_handler()

 {

 if (m_handle) Complete();

 }

 template<typename...Args>

 void operator()(Args&&...)

 {

 Complete();

 }

private:

 Awaiter* m_awaiter;

 coroutine_handle<> m_handle;

 resume_apartment_context m_context;

 void Complete()

 {

 resume_apartment(m_context.context,

 std::exchange(m_handle, {}),

 &m_awaiter->failure);

 }

};

If you try this, though, it fails miserably: The delegate constructor moves the functor into the

newly-constructed delegate, but coroutine_handle ‘s move constructor simply copies the

coroutine handle. This means that when the delegate constructor moves the functor, the

temporary functor destructs and says, “Oh no, I was never invoked! I must have been

disconnected!”, and it resumes the coroutine. And then when the coroutine completes for

real, the invoke occurs a second time, and we have resumed a running coroutine, which is

illegal.

We need custom move operators that null out the coroutine handle in the moved-from

object. This is another case where we could have used the movable_primitive template

type, but C++/WinRT just writes it out by hand.

 disconnect_aware_handler(disconnect_aware_handler&& other) noexcept

 : m_context(std::move(other.m_context))

 , m_awaiter(std::exchange(other.m_awaiter, {}))

 , m_handle(std::exchange(other.m_handle, {})) { }

We null out the m_awaiter just for good measure.

https://devblogs.microsoft.com/oldnewthing/20230116-00/?p=107717

5/5

If you see a coroutine resumption from disconnect_aware_handler ‘s destructor when

debugging, then that is a sign that the coroutine is resuming due to a disconnection from the

Windows Runtime asynchronous operation provider.

