
1/4

January 25, 2023

Inside C++/WinRT: Apartment switching: Unblocking the
outgoing thread

devblogs.microsoft.com/oldnewthing/20230125-00

Raymond Chen

Last time, we built an apartment_context object and used it as part of our coroutine

infrastructure so that co_await of Windows Runtime asynchronous operations resume in

the same COM context as they started.

Our implementation of the apartment_context suffers from the problem of the

synchronous apartment-changing callback: The thread being switched from waits

synchronously for the thread being switched to. This is a bad thing if the thread being

switched from is a UI thread that needs to keep the UI responsive, whereas the thread being

switched to is a background thread that is happy to make long blocking calls.

C++/WinRT addresses this problem by hopping through a background thread in cases where

it thinks this will be a problem. In order to detect whether we are in a problem case, we use

the CoGetApartmentType function to determine what kind of apartment we are in.

https://devblogs.microsoft.com/oldnewthing/20230125-00/?p=107749
https://devblogs.microsoft.com/oldnewthing/20230124-00/?p=107746
https://devblogs.microsoft.com/oldnewthing/20191220-00/?p=103232
https://devblogs.microsoft.com/oldnewthing/20180208-00/?p=97986

2/4

inline std::pair<int32_t, int32_t> get_apartment_type() noexcept

{

 int32_t aptType;

 int32_t aptTypeQualifier;

 check_hresult(WINRT_IMPL_CoGetApartmentType(&aptType, &aptTypeQualifier));

 return { aptType, aptTypeQualifier };

}

inline bool is_sta_thread() noexcept

{

 auto type = get_apartment_type();

 switch (type.first)

 {

 case 0: /* APTTYPE_STA */

 case 3: /* APTTYPE_MAINSTA */

 return true;

 case 2: /* APTTYPE_NA */

 return type.second == 3 /* APTTYPEQUALIFIER_NA_ON_STA */ ||

 type.second == 5 /* APTTYPEQUALIFIER_NA_ON_MAINSTA */;

 }

 return false;

}

The code that switches apartments now checks whether it is on a thread that hosts a single-

threaded apartment (STA). If so, then instead of resuming the coroutine synchronously via

ContextCallback() , it schedules the work to a background thread. That way, it is a

background thread that blocks on a potentially long-running coroutine rather than a UI

thread.

First, we rename our old resume_apartment function so it represents the synchronous

resumption of the coroutine in another apartment.

void resume_apartment_sync(

 com_ptr<IContextCallback> const& context,

 std::coroutine_handle<> handle)

{

 com_callback_args args{};

 args.data = handle.address();

 check_hresult(

 context->ContextCallback(resume_apartment_callback,

 &args,

 guid_of<ICallbackWithNoReentrancyToApplicationSTA>(),

 5, nullptr));

}

And then we write a new resume_apartment that resumes either synchronously or

asynchronously, depending on the apartment context.

3/4

inline auto resume_apartment(

 com_ptr<IContextCallback> const& context,

 coroutine_handle<> handle)

{

 WINRT_ASSERT(context.valid());

 if (is_sta_thread())

 {

 resume_apartment_on_threadpool(context, handle);

 }

 else

 {

 resume_apartment_sync(context, handle);

 }

}

To resume a coroutine in an apartment from the threadpool, we do it in two steps. First,

schedule work on the threadpool. The work consists of synchronously switching to the

destination apartment for resuming the coroutine.

struct threadpool_resume

{

 threadpool_resume(com_ptr<IContextCallback> const& context,

 coroutine_handle<> handle) :

 m_context(context), m_handle(handle) { }

 com_ptr<IContextCallback> m_context;

 coroutine_handle<> m_handle;

};

inline void __stdcall fallback_submit_threadpool_callback(

 void*, void* p) noexcept

{

 std::unique_ptr<threadpool_resume>

 state{ static_cast<threadpool_resume*>(p) };

 resume_apartment_sync(state->m_context, state->m_handle);

}

inline void resume_apartment_on_threadpool(

 com_ptr<IContextCallback> const& context,

 coroutine_handle<> handle)

{

 auto state = std::make_unique<threadpool_resume>(context, handle);

 submit_threadpool_callback(fallback_submit_threadpool_callback,

 state.get());

 state.release();

}

The resume_apartment_on_threadpool function captures its parameters into a

threadpool_resume structure and uses that pointer as the context pointer for a

threadpool callback. The threadpool callback reconstitutes the unique_ptr and uses

resume_apartment_sync to resume the coroutine inside the apartment.

4/4

We have avoided the problem of the synchronous apartment-changing callback blocking a UI

thread for an extended period of time. We detected the dangerous situation and moved the

work to a threadpool thread, which is not a UI thread.

Next time, we’ll fix another problem with this implementation.

