
1/3

January 24, 2023

Inside C++/WinRT: Apartment switching: The basic idea
devblogs.microsoft.com/oldnewthing/20230124-00

Raymond Chen

One of the features of C++/WinRT is that if you co_await an IAsyncAction or

IAsyncOperation , the C++/WinRT library returns to the original COM apartment before

resuming the coroutine. This behavior is generally desirable because you expect that COM

objects prior to performing a co_await are still usable after it returns.

This task is accomplished with the assistance of IContextCallback.

Here’s the basic idea:¹

inline int32_t __stdcall resume_apartment_callback(

 com_callback_args* args) noexcept

{

 coroutine_handle<>::from_address(args->data)();

 return 0;

};

void resume_apartment(

 com_ptr<IContextCallback> const& context,

 std::coroutine_handle<> handle)

{

 com_callback_args args{};

 args.data = handle.address();

 check_hresult(

 context->ContextCallback(resume_apartment_callback,

 &args,

 guid_of<ICallbackWithNoReentrancyToApplicationSTA>(),

 5, nullptr));

}

To resume a coroutine synchronously in a particular context, we use the IContext‐

Callback::ContextCallback method to ask COM to run a particular function in that

desired context. We convert the coroutine handle to a pointer to use as our reference data,

and in the callback, we convert the pointer back to a coroutine handle so we can invoke it,

thereby resuming the coroutine.

https://devblogs.microsoft.com/oldnewthing/20230124-00/?p=107746
https://devblogs.microsoft.com/oldnewthing/20191129-00/?p=103162

2/3

We can use this to build the apartment_context object.

struct apartment_context

{

 apartment_context() = default;

 apartment_context(std::nullptr_t) : context(nullptr) { }

 operator bool() const noexcept { return context != nullptr; }

 bool operator!() const noexcept { return context == nullptr; }

 com_ptr<IContextCallback> context =

 capture<IContextCallback>(WINRT_IMPL_CoGetObjectContext);

};

struct apartment_awaiter

{

 apartment_context const& context;

 bool await_ready() const noexcept

 {

 return false;

 }

 void await_suspend(coroutine_handle<> handle)

 {

 apartment_context extend_lifetime = context;

 resume_apartment(context.context, handle);

 }

 void await_resume() const noexcept

 {

 }

};

apartment_awaiter operator co_await(apartment_context const& context)

{

 return { context };

}

To construct an apartment_context , we call CoGetObjectContext (through the

C++/WinRT alias) to obtain an IContextCallback .

There is also a nullptr constructor if you want to declare an empty apartment_context .

Empty contexts aren’t usable, but they are useful: They let you declare a variable and

initialize it with a proper context later.

To co_await an apartment_context , we construct an apartment_awaiter which

remembers the context being awaited, and the await_suspend method uses it to call

resume_apartment() .

3/3

We can now add COM context support to our oversimplified Windows Runtime awaiter.

template <typename Async>

struct await_adapter

{

 await_adapter(Async const& async) : async(async) { }

 Async const& async;

 bool await_ready() const noexcept

 {

 return false;

 }

 void await_suspend(std::experimental::coroutine_handle<> handle) const

 {

 auto extend_lifetime = async;

 async.Completed([

 handle,

 context = apartment_context()

](auto&& ...)

 {

 resume_apartment(context.context, handle);

 });

 }

 auto await_resume() const

 {

 return async.GetResults();

 }

};

We capture an apartment_context in the lambda and use resume_apartment() to

resume the coroutine in that captured context.

This code is still flawed, though. We’ll continue the discussion next time.

¹ The C++/WinRT library does not #include <windows.h> . All of the dependencies on

Windows are wrapped inside parallel declarations within the C++/WinRT library. The com_

callback_args structure, for example, is an ABI-equivalent version of the

ComCallData structure.

https://devblogs.microsoft.com/oldnewthing/20230123-00/?p=107742

