
1/4

January 19, 2023

Windows Runtime asynchronous operations can fail in
two different ways, so make sure you get them both

devblogs.microsoft.com/oldnewthing/20230119-00

Raymond Chen

CLR Tasks, PPL tasks, JavaScript Promises, and Windows Runtime asynchronous actions

and operations can fail in two ways.

They can throw an exception instead of returning the Task , task , IAsyncAction ,

or IAsyncOperation . “Synchronous failure.”

They can return a Task , task , IAsyncAction , or IAsyncOperation which

completes with an exception. “Asynchronous failure.”

Synchronous failures are raised at the point you call the method; you can think of them as

“immediate failure”. Asynchronous failure are raised at the point you check the result; you

can think of them as “delayed failure”.

Framework Synchronous failure Asynchronous failure

C# var task = o.DoSomethingAsync() task.Result

await task

PPL auto task = o->DoSomethingAsync() task.get()
co_await task

C++/WinRT auto op = o.DoSomethingAsync() op.GetResults()

co_await op

JavaScript var p = o.DoSomethingAsync() p.catch()

await p

A customer reported that they were getting exceptions from some code, which they couldn’t

understand because they thought they were handling exceptions.

https://devblogs.microsoft.com/oldnewthing/20230119-00/?p=107727

2/4

// C++ with PPL

using namespace Concurrency;

using namespace Platform;

task<String^>

Widget::GetNameAsync()

{

 return m_doodad->GetNameAsync() // crash here

 .then([](task<String^> outerTask) {

 String^ name;

 try {

 name = outerTask.get();

 } catch (...) {

 }

 return name;

 }, task_continuation_context::use_arbitrary());

}

The code wraps the outerTask.get() inside a try block, so that should catch all the

exceptions that come out of the m_doodad->GetNameAsync() task.

And that’s true, it does catch all the exceptions that come out of the task.

But the exception that crashed didn’t come out of the task!

The debugger pointed at the line that raised the exception: It was from the call to

GetNameAsync() itself, before it even returned a task. The customer got so focused on the

Concurrency Runtime that they forgot about the basic rules of C++: If you want to catch an

exception, you have to do it inside a try block.

In order to catch that exception, the call to GetNameAsync() must itself be inside a try

block.

3/4

task<String^>

Widget::GetNameAsync()

{

 task<String^> nameTask;

 try {

 nameTask = m_doodad->GetNameAsync();

 } catch (...) {

 return task_from_result<String^>(nullptr);

 }

 return nameTask.then([](task<String^> outerTask) {

 String^ name;

 try {

 name = outerTask.get();

 } catch (...) {

 }

 return name;

 }, task_continuation_context::use_arbitrary());

}

I separated the return m_doodad->GetNameAsync().then() into two steps:

 task<String^> nameTask = m_doodad->GetNameAsync();

 return nameTask.then(...);

The try statement inside the then lambda deals with exceptions that come out of the

task. We just need another try to deal with the exceptions that occur while trying to

produce the task:

 task<String^> nameTask;

 try {

 nameTask = m_doodad->GetNameAsync();

 } catch (...) {

 return task_from_result<String^>(nullptr);

 }

If an exception occurs, we catch it and return an already-completed task that produces an

empty string. Otherwise, we hook up the continuation that deals with the task completion as

before.

Once you see how the expression was taken apart, you can combine them again, putting the

entire statement inside a giant try block, even though it’s only the ->GetNameAsync()

that we’re interested in. (Most languages with exceptions make it cumbersome to catch

exceptions that come out of part of an expression, so most people just expand the scope of

the try to include the entire statement.)

4/4

task<String^>

Widget::GetNameAsync()

{

 try {

 return m_doodad->GetNameAsync()

 .then([](task<String^> outerTask) {

 String^ name;

 try {

 name = outerTask.get();

 } catch (...) {

 }

 return name;

 }, task_continuation_context::use_arbitrary());

 } catch (...) {

 return task_from_result<String^>(nullptr);

 }

}

Note that if the customer had been using PPL with co_await support, the try block

would naturally have enclosed both the production of the task as well as handling for its

completion: The inability to wrap just part of an expression in a try block actually helps

you write correct code this time:

task<String^>

Widget::GetNameAsync()

{

 try {

 co_return co_await m_doodad->GetNameAsync();

 } catch (...) {

 co_return nullptr;

 }

}

One catch with this rewrite is that co_await of a Concurrency Runtime task does not let

you control the task continuation context. It always uses get_current_winrt_context()

when awaiting tasks, and CallbackContext::Same when awaiting Windows Runtime

asynchronous actions and operations.

