
1/3

May 13, 2020

Inside std::function, part 1: The basic idea
devblogs.microsoft.com/oldnewthing/20200513-00

Raymond Chen

The C++ language standard library comes with a std::function template type which

represents a “thing you can invoke”. It can hold any callable, such as

Function pointer.

Lambda.

Other object with operator() .

The way this is done is with the assistance of a polymorphic helper object that understands

the specific callable it is wrapping.

Here’s a sketch. For concreteness, let’s say we’re implementing std::function<bool(int,

char*)> . For readability, I’ve de-uglified¹ the identifiers.

https://devblogs.microsoft.com/oldnewthing/20200513-00/?p=103745

2/3

struct callable_base

{

 callable_base() = default;

 virtual ~callable_base() { }

 virtual bool invoke(int, char*) = 0;

 virtual unique_ptr<callable_base> clone() = 0;

};

template<typename T>

struct callable : callable_base

{

 T m_t;

 callable(T const& t) : m_t(t) {}

 callable(T&& t) : m_t(move(t)) {}

 bool invoke(int a, char* b) override

 {

 return m_t(a, b);

 }

 unique_ptr<callable_base> clone() override

 {

 return make_unique<callable>(m_t);

 }

};

struct function

{

 std::unique_ptr<callable_base> m_callable;

 template<typename T>

 function(T&& t) :

 m_callable(new callable<decay_t<T>>

 (forward<T>(t)))

 {

 }

 function(const function& other) :

 m_callable(other.m_callable ?

 other.m_callable->clone() : nullptr)

 {

 }

 function(function&& other) = default;

 bool operator()(int a, char* b)

 {

 // TODO: bad_function_call exception

 return m_callable->invoke(a, b);

 }

};

3/3

The idea is that each function has a callable_base , which is an interface that allows us

to perform basic operations on callable objects: Create a copy, invoke it, and destroy it.

Invoking the function forwards the invoke to the callable_base . Copying the

function requires a special clone method on the callable_base , because

unique_ptr is not copyable.

Constructing the function is a matter of creating a custom callable for the specific

functor. It’s conceptually simple, but the C++ language makes us write out a bunch of stuff to

get it to work. We just want a callable that wraps the thing that was passed to the constructor.

The std::function in the standard library is basically like this, but with additional

optimizations to avoid an allocation in the case of a small callable . Said optimizations are

in fact mandatory by the standard if the callable is a plain function pointer or a

reference_wrapper .

We’ll look at that optimization next time, because it gives us some insight into how we can do

similar things with our own types.

¹ Uglification is the process of taking readable names and transforming them into names that

are reserved for the implemenmtation. Different libraries have different uglification

conventions. For the Microsoft Visual C++ implementation of the standard library, the

uglifications tend to be

_My prefix for member variables.

_Ty prefix for type names.

_Fn prefix for functors.

_P prefix for pointers.

_ (and capital first letter) for most other things.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

