
1/2

December 26, 2019

C++ coroutines: The problem of the DispatcherQueue
task that runs too soon, part 4

devblogs.microsoft.com/oldnewthing/20191226-00

Raymond Chen

Last time, we made another attempt to fix a race condition in C++/WinRT’s

resume_foreground(DispatcherQueue) function when it tries to resume execution on a

dispatcher queue. We did this by having the queued task wait until await_ suspend was

finished before allowing the coroutine to resume, and we found a nice place to put the

synchronization object, namely in the awaiter, but even with that fix, we introduced

additional memory barriers into the hot code path.

But it turns out all this work was unnecessary. We just had to look at the problem a different

way.

The purpose of storing the result of TryEnqueue into m_queued is so that

await_ resume can report whether the lambda was queued or not. But we can infer that

information another way: The fact that our lambda is running means that got got queued.

Because if the lambda were not queued, then it would never have run in the first place.

This allows us to simplify the awaiter by making the lambda responsible for reporting that it

was queued.

 bool await_suspend(coroutine_handle<> handle)

 {

 // m_queued =

 return

 m_dispatcher.TryEnqueue([this, handle]

 {

 m_queued = true;

 handle();

 });

 // return m_queued;

 }

There are two cases to consider:

https://devblogs.microsoft.com/oldnewthing/20191226-00/?p=103268
https://devblogs.microsoft.com/oldnewthing/20191225-00/?p=103265

2/2

First, the TryEnqueue could fail. In that case, await_ suspend returns false , and

m_queued continues to have its original value (which is also false). The coroutine

resumes immediately on the same thread, and the await_ ready will return m_queued ,

which is false . The value of m_queued correctly reports that the lambda was not queued.

Otherwise, TryEnqueue succeeded, and this is the more interesting case. Since

await_ suspend does not access any member variables after calling TryEnqueue , it

doesn’t matter whether the lambda runs before or after await_ suspend returns.

The await_ suspend returns true because the lambda was queued, and this permits the

suspension of the coroutine to proceed. Nobody has updated m_queued , so it still has its

initial value of false . This is an incorrect state of affairs, but that’s okay: We’ll fix it before

anybody notices.

When the lambda runs, it sets m_queued to true . This restores balance to the universe by

bringing the m_queued member variable to a value consistent with what actually happened.

Only after repairing m_queued do we invoke the handle . The two operations (updating

m_queued and invoking the handle), so we don’t have a race condition between the

setting of m_queued and its observation in await_ ready .

You could say that we lazy-updated the m_queued member variable. It’s not safe to update it

in await_ suspend , so we wait until the lambda. We didn’t have to pass the value of

true explicitly to the lambda, because the lambda knows that true is the only value it

could possibly be if the lambda is running.

That wraps up our introduction to C++ coroutines. I haven’t even gotten a chance to get into

promises and the other infrastructure needed to create coroutines.¹ So far, we’ve just been

looking at the infrastructure needed to create awaitable objects. Someday, I’ll write about

promises, but I’m going to take a break for a bit.

Bonus chatter: Notice how my initial instinct for fixing this problem was writing fifty-

some-odd lines of code. But stopping to think let me shrink it to about half that. And then

stepping back and looking at the bigger issue allowed me to fix the problem by making small

changes to two lines of code.

¹ This means that we will have to wait before we learn about the mysterious step 1 in the

search for an awaiter.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

