
1/3

December 25, 2019

C++ coroutines: The problem of the DispatcherQueue
task that runs too soon, part 3

devblogs.microsoft.com/oldnewthing/20191225-00

Raymond Chen

Last time, we fixed a race condition in C++/WinRT’s resume_foreground(Dispatcher‐

Queue) function when it tries to resume execution on a dispatcher queue. We did this by

having the queued task wait until await_ suspend was finished before allowing the

coroutine to resume. The hard part was finding a place to put the synchronization object, and

we ended up putting it in the queued task’s lambda.

But it turns out there’s another place we can put it, and it was in front of us the whole time.

We can put it in the awaiter.

https://devblogs.microsoft.com/oldnewthing/20191225-00/?p=103265
https://devblogs.microsoft.com/oldnewthing/20191224-00/?p=103262

2/3

auto resume_foreground(DispatcherQueue const& dispatcher)

{

 struct awaitable

 {

 DispatcherQueue m_dispatcher;

 bool m_queued = false;

 slim_event ready;

 bool await_ready()

 {

 return false;

 }

 bool await_suspend(coroutine_handle<> handle)

 {

 bool result = m_dispatcher.TryEnqueue([this, handle]

 {

 ready.wait();

 handle();

 });

 m_queued = result;

 ready.signal();

 return result;

 }

 bool await_resume()

 {

 return m_queued;

 }

 };

 return awaitable{ dispatcher };

}

The awaiter is destructed when the coroutine resumes, and the coroutine resumes either

when the coroutine handle is invoked (which we do in the lambda), or when the

await_ ready or await_ suspend methods indicate that the resumption should

proceed immediately.

Therefore, members of the awaiter are good as long as we haven’t done any of those things.

In the case of a successful TryEnqueue , the await_ suspend is not going to ask for

immediate resumption. The resumption will occur when the lambda invokes the handler. But

our lambda waits for async_ suspend to signal the event before invoking the handler, so

the awaiter is still valid at that point.

In the case of a failed TryEnqueue , the lambda will never run. Instead, the coroutine

resumes after await_ suspend returns with a value of false . Prior to the return, the

awaiter is still valid, so we can signal the event. (Mind you, there’s nobody listening for the

signal.)

3/3

This is a lot simpler than trying to dig the event out of the lambda.

However, there is still quite a bit of overhead to this plan: While it’s true that the

slim_ event runs entirely in user mode in the non-blocking case, it still generates a good

number of memory barriers. The slim_ event:: signal method uses a memory barrier

in order to ensure that m_queued is made visible to all threads before setting signaled to

true. If it didn’t do this, then the wait function could see that signaled is true and run

ahead with the wrong value of m_queued .

Furthermore, after the signal method updates the signaled member, it calls WakeBy‐

AddressAll , which will itself erect another memory barrier to make sure it found all the

waiters (even if there are none).

The memory barriers are necessary to ensure that the updated value of m_queued that was

written by the await_ suspend can be ready by await_ ready in the case that the

coroutine continues on the dispatcher thread.

Next time, we’ll get rid of the memory barriers.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

