
1/5

December 20, 2019

C++ coroutines: The problem of the synchronous
apartment-changing callback

devblogs.microsoft.com/oldnewthing/20191220-00

Raymond Chen

Today is a puzzle you can you can try to solve with the information you’ve learned about C++

coroutines and C++/WinRT.

C++/WinRT uses the IContextCallback interface to remember the context that initiated a

co_await operation, so it can resume execution in the original apartment when the

co_await completes.

The basic idea goes like this:

void await_suspend(std::experimental::coroutine_handle<> handle)

{

 async.Completed([handle,

 context = CaptureCurrentApartmentContext()]

 (auto const&, Windows::Foundation::AsyncStatus)

 {

 // When the operation completes, get back to the

 // original apartment and resume the coroutine there.

 check_hresult(InvokeInContext(context.get(), handle));

 });

}

Maybe you see a problem here. I noticed a problem when I studied the C++/WinRT code and

meant to do a write-up on it eventually, but then I actually ran into the problem and alerted

Kenny, who promptly fixed it. (Note: Clicking through gives away the answer.)

The IContextCallback:: ContextCallback method invokes the callback synchronously,

and the invoking apartment is stuck waiting for the result. This is good if you want to

callback to do some work that you are waiting for, but it’s not good if the caller just wants to

fire and forget.

Thread 1 Thread 2

https://devblogs.microsoft.com/oldnewthing/20191220-00/?p=103232
https://devblogs.microsoft.com/oldnewthing/20191129-00/?p=103162
https://devblogs.microsoft.com/oldnewthing/20191128-00/?p=103157
https://github.com/microsoft/xlang/issues/544
https://github.com/microsoft/xlang/pull/546

2/5

co_await something;

await_suspend();

operation continues

 operation completes

InvokeInContext

handle();

coroutine runs to next

  suspension point

blocked in

InvokeInContext

 InvokeInContext returns

In the above diagram, code inside a box represents code being executed on behavior of a

coroutine. If the thread does not have a box, then it is available to do other work.

A synchronous callback means that when this awaiter tries to resume execution, the thread

that raised the Completed event is stuck until the continued coroutine reaches a suspension

point or completes, because those are the things that cause the coroutine to return at the ABI.

This period of time is represented by the shaded section labeled “blocked in InvokeIn-

Context”. During this period, the thread is not available to do work.

This shaded period during which the thread is unresponsive may last for a long time. And

that’s a problem if it’s a UI thread.

Consider the following scenario:

IAsyncAction SomethingAsync()

{

 co_await resume_background();

 DoBackgroundWork();

 // Get to our UI thread so we can update UI.

 co_await resume_foreground(Dispatcher());

 UpdateUIStuff();

 co_return;

}

This coroutine switches immediately to a background thread, does a bunch of work, and then

switches back to the UI thread to update some UI.

You might decide to use this function like this:

3/5

IAsyncAction SomethingMoreAsync()

{

 // Do all our work on a background thread.

 co_await resume_background();

 LongBlockingOperation();

 co_await SomethingAsync();

 LongBlockingOperation();

}

In C++/WinRT, co_await of an IAsyncAction returns control to the same apartment

that originated the operation, so all of the LongBlockingOperation calls occur on a

background thread. Certainly it’s safe to perform long blocking operations on a background

thread, right?

Let’s look more closely at what happens.

UI thread Background thread

SomethingMoreAsync begins

co_await resume_background();

 SomethingMoreAsync resumes

 LongBlockingOperation()

 SomethingAsync begins

co_await resume_background();

 SomethingAsync resumes

 DoBackgroundWork()

 co_await resume_foreground();

SomethingAsync resumes

UpdateUIStuff();

SomethingAsync completes

Completed() handler tries to

  resume on original context

InvokeInContext

⇐ things get interesting

blocked in

InvokeInContext

handle();

SomethingMoreAsync resumes

LongBlockingOperation()

SomethingMoreAsync completes

4/5

The first part of the sequence goes as you would expect. The SomethingMoreAsync

coroutine moves to a background thread and performs a long blocking operation. This is

okay, because we’re on a background thread.

Next, it calls SomethingAsync , which starts by moving to a background thread. (It’s already

on a background thread, but it doesn’t know that.)

Once rescheduled (redundantly) on a background thread, it does some background work.

Again, this background work can take a long time, but that’s okay because we’re on a

background thread.

When the background work is done, SomethingAsync moves back to the UI thread.

Once back on the UI thread, SomethingAsync updates its UI and completes the coroutine.

Now things get interesting.

The awaiter for IAsyncAction wants to resume in the original apartment, which in this

case means going back to a background thread. It does this by using IContext‐

Callback:: ContextCallback , which we wrapped inside InvokeInContext for

expository purposes.

The IContextCallback:: ContextCallback method invokes the callback synchronously,

which means in our case that the call doesn’t return until the resumed coroutine reaches its

next suspension point. But before it can complete or perform another co_await , it

performs a long blocking operation, believing that since it is on a background thread, long

blocking operations are permitted.

And it’s true that long blocking operations are permitted on a background thread. The

problem is that a UI thread is waiting for the background thread.

The background thread is unwittingly holding up a UI thread.

The fix is to use IContextCallback:: ContextCallback only in the case when we need to

return to a UI thread. If we need to return to a background thread, we can use the non-

blocking resume_ background to do that.

This means that if a background thread needs to return to a UI thread, then the background

thread will be held hostage by the coroutine on the UI thread until it completes or suspends.

That’s not so bad, because background threads can block. And besides, coroutines on UI

threads are not supposed to perform long blocking operations in the first place.

It also means that if a second UI thread needs to return to an originating UI thread, then the

second UI thread will be held hostage by the coroutine on the originating UI thread until it

completes or suspends. But that’s not so bad, because, as we noted before, coroutines on UI

https://github.com/microsoft/xlang/pull/546

5/5

threads are not supposed to perform long blocking operations in the first place.

Next time, we’ll look at a coroutine bug in the C++/WinRT library and try to fix it by applying

what we’ve learned so far.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

