
1/3

December 11, 2019

C++ coroutines: Framework interop
devblogs.microsoft.com/oldnewthing/20191211-00

Raymond Chen

So far, we’ve been looking at the basics of awaitable objects. Even though we barely know

anything beyond await_ suspend , we already know enough to allow us to start diving

deeper.

It is frequently the case that you need your awaiter to interact with something outside the

C++ standard library. To make it easier to integrate coroutines with existing frameworks, the

coroutine_handle can be converted to a void* by calling its address() method, and

the resulting void* can be converted back to an equivalent coroutine_handle by calling

from_ address() .¹

Most frameworks let you pass a pointer-sized piece of data around to help remember state,

and being able to convert a handle into a pointer (and back) lets you pass the coroutine

handle through such state parameters. Otherwise, you’d have to copy the

coroutine_handle to the heap and pass the address of the heap block, and then keep track

of when to free the heap block.

Let’s demonstrate this by reimplementing resume_ new_ thread in terms of Win32

functions instead of the std:: thread standard library class.

https://devblogs.microsoft.com/oldnewthing/20191211-00/?p=103201
https://devblogs.microsoft.com/oldnewthing/20191210-00/?p=103197

2/3

struct resume_new_thread : std::experimental::suspend_always

{

 void await_suspend(

 std::experimental::coroutine_handle<> handle)

 {

 HANDLE thread = CreateThread(nullptr, 0, callback,

 handle.address(), 0, &threadId);

 if (!thread) throw some_kind_of_error();

 CloseHandle(thread);

 }

 DWORD CALLBACK callback(void* parameter)

 {

 auto handle = std::experimental::coroutine_handle<>::

 from_address(parameter);

 handle();

 return 0;

 }

};

The basic idea is the same as last time: When the coroutine suspends, schedule the

continuation on a newly-created thread.

The CreateThread function allows you to pass a single pointer-sized piece of data, so we

convert our handle to a void* by calling the address method, and pass that pointer as

the reference data to the thread procedure. The thread procedure converts the pointer back

into a coroutine handle by calling from_ address , and then invokes the coroutine to

resume execution.

If terseness is your game, you could inline the thread procedure as a stateless lambda, taking

advantage of the implicit conversion from a stateless lambda to a function pointer.

struct resume_new_thread : std::experimental::suspend_always

{

 void await_suspend(

 std::experimental::coroutine_handle<> handle)

 {

 HANDLE thread = CreateThread(nullptr, 0,

 [](void* parameter) -> DWORD

 {

 std::experimental::coroutine_handle<>::

 from_address(parameter)();

 return 0;

 }, handle.address(), 0, &threadId);

 if (!thread) throw some_kind_of_error();

 CloseHandle(thread);

 }

};

https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623

3/3

Next time, we’ll use what we’ve learned about awaiters to develop a way to override

C++/WinRT coroutine threading defaults.

¹ The method names address and from_ address give a strong clue as to what the

void* represents: it’s the address of runtime-managed coroutine state, known in the

language specification as a coroutine frame.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

