
1/2

December 2, 2019

When should I use delayed-marshaling when creating an
agile reference?

devblogs.microsoft.com/oldnewthing/20191202-00

Raymond Chen

The RoGetAgileReference function lets you specify whether you want the marshaling of

the wrapped object to take place eagerly or lazily.

Flag Behavior

AGILEREFERENCE_ DEFAULT Eager marshaling

AGILEREFERENCE_ DELAYEDMARSHAL Lazy marshaling

Why should you choose one over the other?

It’s a question of whether you want to do a little work now in the hope of saving more work

later.

If you marshal eagerly, then at the point that the agile reference is created, it also gathers the

information necessary to create a proxy later. Later, if you use the agile reference from

another thread, the agile reference uses that captured information to produce a proxy right

then and there.

If you marshal lazily, then at the point that the agile reference is created, it merely

remembers the COM context that the agile reference was created in, which is a relatively fast

operation. Later, if you use the agile reference from another thread, the agile reference first

goes back to the COM context to capture the information necessary to create the proxy, and

then it returns to the requesting thread and generates the proxy from that information.

Action Eager marshal Lazy marshal

Create agile reference Create information for
proxy

Capture current COM context
(fast)

Use from same context Use original object (fast) Use original object (fast)

https://devblogs.microsoft.com/oldnewthing/20191202-00/?p=103171
https://devblogs.microsoft.com/oldnewthing/20191129-00/?p=103162

2/2

Use from other context

(first time)

Create proxy Call into captured context

Create information for proxy

Return to original context

Create proxy

Use from other context

(second and subsequent

times)

Create proxy Create proxy

Observe that if your intended operations are limited to the first two rows, then you’re better

off doing lazy marshaling, since you avoid the Create information for proxy step. But the

penalty for guessing wrong is that when you use the agile reference from another context for

the first time, you need to do extra work to get back to the original context in order to

perform the Create information for proxy step.

On the other hand, if you know that you’re going to explore rows three and four, then you

should do eager marshaling, because it’s less expensive to create the information for the

proxy up front than on demand. The penalty for guessing wrong is that you went through the

Create information for proxy step unnecessarily.

Notice that in both cases, it’s okay if you guess wrong. The operations will all still succeed.

It’ll just be less efficient.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

