
1/3

November 29, 2019

Using contexts to return to a COM apartment later
devblogs.microsoft.com/oldnewthing/20191129-00

Raymond Chen

We’ve been looking at COM contexts lately, and so far all of these COM contexts were custom

contexts created for the purpose of being able to bulk-disconnect all objects in them. But

there are also the COM contexts that COM creates automatically for you, and those are also

interesting.

Each apartment has a COM context object, and you can access it by calling the CoGet‐

ObjectContext function. You can then use the IContextCallback:: ContextCallback

to get back to that context.

In other words, you can capture the current context and return to it any time you like. This

can be used if you want to get the effect of marshaling, but when the thing you want to

marshal isn’t a COM object.

void StartSave(std::function<void(bool)> saveComplete)

{

 start_save().on_completed(

 [saveComplete = std::move(saveComplete)](bool result)

 {

 saveComplete(result);

 });

}

This version of StartSave starts the save operation, and when the save is complete, it calls

the std::function with the result. The callback could happen on any thread, but the

std::function may have captured objects that have COM apartment affinity, like

references to other COM apartment-affine objects.

We can update the StartSave function so that the saveComplete is invoked in the same

apartment that initiated the StartSave operation.

https://devblogs.microsoft.com/oldnewthing/20191129-00/?p=103162
https://devblogs.microsoft.com/oldnewthing/20191128-00/?p=103157

2/3

auto CaptureCurrentApartmentContext()

{

 winrt::com_ptr<IContextCallback> context;

 check_hresult(CoGetObjectContext(IID_PPV_ARGS(context.put())));

 return context;

}

void StartSave(std::function<void(bool)> saveComplete)

{

 start_save().on_completed(

 [saveComplete = std::move(saveComplete),

 context = CaptureCurrentApartmentContext()](bool result)

 {

 InvokeInContext(context.Get(), [&]()

 {

 saveComplete(result);

 });

 });

}

This trick is useful if you have an object that was created on a UI thread and must be

destructed on that same UI thread, but you also capture a strong reference to the object so it

can be used by background threads. If the background thread is the one that releases the last

strong reference, the object will be destructed on the background thread. To fix that, you can

make the destructor run on the UI thread.

// Error checking elided for expository purposes.

class MyThing

{

 Microsoft::WRL::ComPtr<IContextCallback> m_context;

 MyThing()

 {

 CoGetObjectContect(IID_PPV_ARGS(&m_context));

 }

 ...

 ULONG Release()

 {

 LONG refCount = InterlockedDecrement(&m_refCount);

 if (refCount == 0) {

 // Normally, we would do a "delete this",

 // but we will go through the ContextCallback to ensure

 // that the deletion happens on the correct thread.

 InvokeInContext(m_context.Get(), [this]()

 {

 delete this;

 });

 }

 return refCount;

 }

};

3/3

More generally, you may have a C++ object that has UI thread affinity, but you want to kick

off some background work, and when the background work is complete, it wants to switch

back to the UI thread to finish the work. You can capture the IContextCallback on the UI

thread, and then use the IContextCallback to get back to the UI thread when you’re

ready.

Another case where you would want to return to an earlier context is in the case of a

coroutine. By default, in C#, await operations resume execution in the same context that

performed the await . In C++, you can accomplish this by capturing the IContext‐

Callback at the point of the co_await and then resume execution inside that same

context. This is how C++/WinRT makes co_await on IAsyncAction and IAsync‐

Operation objects resume execution in the same thread context.

Capturing the current IContextCallback gives you a way to “go back home again”: You

can use it to get back to the thread context at some future point.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

