
1/5

November 28, 2019

How do you get into a context via IContext-
Callback::ContextCallback?

devblogs.microsoft.com/oldnewthing/20191128-00

Raymond Chen

For the past few articles, I’ve been talking about COM contexts and how you can use them to

resolve the impasse that is created when the COM programming model requires you to keep

your DLL loaded because there are still outstanding references to objects in it, but a

competing programming model (say, a Windows NT service or an application’s custom plug-

in model) requires you to unload your DLL.

As I noted before, the method for doing this is the IContextCallback:: Context‐

Callback method. When you call this method, you provide a callback function: The

IContextCallback:: ContextCallback switches to the target context and calls your

callback function. When your callback function returns, its HRESULT return value is

propagated out of the context back to the original caller.

Okay, now here is where I admit that the IContextCallback:: ContextCallback

method is kind of weird. It’s weird because it’s really a backdoor into the very low-level COM

infrastructure. This is the same infrastructure that COM itself uses to marshal method calls,

but we’re repurposing it to marshal a simple function call.

The parameters to IContextCallback:: ContextCallback are as follows:

A callback function. This is the function that executes in the context.

A pointer to a ComCallData structure. The only thing interesting in this structure is

the pUserDefined , which allows you to pass a pointer’s worth of data to the callback.

An interface ID that represents the interface you are fake-marshaling.

A zero-based index representing the method on the interface you are fake-marshaling.

A reserved parameter that must be nullptr .

I say “fake-marshaling” because what we’re doing is prank-calling the existing marshaling

infrastructure.

https://devblogs.microsoft.com/oldnewthing/20191128-00/?p=103157
https://devblogs.microsoft.com/oldnewthing/20191126-00/?p=103140
https://devblogs.microsoft.com/oldnewthing/20191127-00/?p=103153

2/5

Two teenagers sit at a kitchen table. One is on the phone.

“Um, hi, is this the COM marshaler? Great. Could you uh marshal a method call into a context
for me?” (stifled giggle)

(regains composure) “No, I’m totally serious.”

“Who is this?” (looks at other prankster nervously) “This is um… your boss.”

“The object is in this context I’m giving you. Do you see it? Okay, great. The interface is
IID_ ITotallyNotAJoke .”

(to other prankster) “I think they’re falling for it.”

(to phone) “What’s the method index? Um…” (looks at other prankster, who shrugs) “Five?
Yeah, five.”

“Uh huh. Okay, great. Just marshal that method call for me, okay? I’ll stay on the line until
you’re done. Thanks.”

What you’ve done is ask the COM infrastructure to marshal the specified method on the

specified interface to an object living inside that context. COM thinks that your callback is

going to invoke the target method, but instead, your callback is going to do something

different entirely. The net effect is that you managed to get your callback to execute inside the

context.

Since this is a prank call, you have to be careful not to raise any suspicions. The interface

must not be IUnknown , because the COM marshaler treats IUnknown as a special case.¹

Similarly, the method index must not be less than 3, because the first three methods on every

interface come from IUnknown .²

In practice, people tend to pick IContextCallback as the fake-marshaled interface and 5

as the fake-marshaled method index.

Now, it turns out that COM is not a total dupe when it comes to these fake-marshaled calls.

Once they realized that the interface ID and method index were basically-garbage

parameters, they decided to put them to use: You can request particular behavior by passing

special sentinel values. Therefore, in practice, the values for the fake-marshaled interface and

method index are as follows:

Behavior Interface ID
Method
index

Classic IID_ ContextCallback 5

3/5

No activity lock IID_ IEnterActivityWithNoLock 5

No ASTA
reentrancy

IID_ ICallbackWithNoReentrancyTo‐
ApplicationSTA

5

For general purpose use (i.e., if you don’t have any need for the other flavors), the

recommended practice is to disable ASTA reentrancy, but you’ll see the classic version in

older code.

The callback is executed in the target context, switching threads if necessary, and the return

value of the callback becomes the return value of the ContextCallback method.

Here’s a handy wrapper function.

template<typename TLambda>

HRESULT InvokeInContext(IContextCallback* context, TLambda&& lambda)

{

 ComCallData data;

 data.pUserDefined = λ

 return context->ContextCallback([](ComCallData* data) -> HRESULT {

 auto& lambda =

 reinterpret_cast<TLambda>(data->pUserDefined);

 return lambda();

 }, &data, IID_ICallbackWithNoReentrancyToApplicationSTA, 5, nullptr);

}

As a convenience, we can permit the lambda to return void , in which case we treat it as if it

had returned S_OK .

template<typename TLambda>

HRESULT InvokeInContext(IContextCallback* context, TLambda&& lambda)

{

 ComCallData data;

 data.pUserDefined = λ

 return context->ContextCallback([](ComCallData* data) -> HRESULT {

 auto& lambda =

 reinterpret_cast<TLambda>(data->pUserDefined);

 if constexpr (std::is_same_v<void, decltype(lambda())>) {

 lambda();

 return S_OK;

 } else {

 return lambda();

 }

 }, &data, IID_ICallbackWithNoReentrancyToApplicationSTA, 5, nullptr);

}

Creating an object inside a context and marshaling it out could be written something like

this:

4/5

HRESULT CreateSomethingInContext(ISomething** something)

{

 *something = nullptr;

 Microsoft::WRL::AgileRef agileRef;

 HRESULT hr = InvokeInContext(context, [&]()

 {

 Microsoft::WRL::ComPtr<ISomething> something;

 HRESULT hr = MakeSomething(&something);

 if (SUCCEEDED(hr)) {

 hr = something.AsAgile(&agileRef);

 }

 return hr;

 });

 if (SUCCEEDED(hr)) {

 hr = agileRef.CopyTo(something);

 }

 return hr;

}

Inside the context, we create the Something and convert it to an agile reference, which we

store in the agileRef variable, which is shared by reference with the code that runs outside

the context. This is legal because agile references can be taken freely across contexts. When

we’re back outside the context, we convert the agile reference to an ISomething , which will

cause a proxy to be created, and it’s that proxy which we return to the caller.

Later, we can disconnect all the proxies from the context:

HJRSULT DisconnectAllProxiesFromContext()

{

 return InvokeInContext(context, []()

 {

 return CoDisconnectContext(INFINITE);

 });

}

Next time, we’ll see how we can use existing contexts, rather than creating our own custom

ones.

¹ COM has special knowledge of the methods of IUnknown because that’s the interface that

everything else is built out of. The IUnknown interface is the foot in the door that makes the

rest of marshaling possible.

For example, when you call IUnknown::AddRef on a proxy, it doesn’t marshal the AddRef

call to the original object. it merely updates the reference count of the proxy. If you prank-

called COM and said, “Yeah, can you get all ready to call IUnknown:: AddRef , but at the

last minute, instead of doing the AddRef , just call me back,” it would say, “Well, I know that

IUnknown:: AddRef doesn’t require any context switching at all, so I can optimize out the

whole thing.”

5/5

² There may be other interfaces that the COM marshaler gives special treatment, like

IInspectable and IWeakReference , so you should avoid those too. If you stick to the

values in the table, then you’ll avoid the problems.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

