
1/2

November 27, 2019

Setting up private COM contexts to allow yourself to
unload cleanly

devblogs.microsoft.com/oldnewthing/20191127-00

Raymond Chen

Last time, we saw how you could use the CLSID_ ContextSwitcher object to create a

private COM context and register your object factory in that context. This allows you to

disconnect all proxies to objects in that context, which is handy when circumstances such as

service shutdown require you to unload a DLL prior to process termination, even though

there may be outstanding references to its objects. Disconnecting the proxies forcibly releases

those references, allowing you to unload.

This trick was originally intended for Windows NT services, but you can use it any other time

you are required to unload your DLL while the host process continues to run. For example,

your DLL may be a plug-in in another process, and that other process’s plug-in model

requires you to unload.¹ However, your plug-in displayed some UI, and a screen reader or

other assistive technology tool may have an active IAccessible reference to one of your UI

objects. Your plug-in created that UI, showed it to the user, and destroyed it, but while it was

visible, an assistive technology tool managed to get an IAccessible for it, and the

reference remains outstanding even though the UI is no longer visible. (Assistive technology

tools do a lot of caching, so the IAccessible is just sitting in a cache somewhere, just in

case your dialog reappears.)

To solve this problem, you can do what the Windows NT service does: Create a private

CLSID_ ContextSwitcher in which all of your COM objects reside, and as part of your

DLL’s “prepare to be unloaded” steps, you can enter the context one last time in order to call

CoDisconnectContext to disconnect all the proxies.

Disconnecting the proxies should cause all your objects to run down, and now you can

destroy the empty context, and allow your DLL to be unloaded.

Creating those proxies to objects in the context is trickier using this pattern because that job

is now on you. With Windows NT services, they register a COM object factory, and COM will

use the factory to create objects. The people requesting the creation of the object are not in

the context, so the natural COM infrastructure will create the proxy automatically.

https://devblogs.microsoft.com/oldnewthing/20191127-00/?p=103153
https://devblogs.microsoft.com/oldnewthing/20191126-00/?p=103140

2/2

In our scenario, however, we aren’t registering a COM factory. Our UI object received a

WM_ GETOBJECT message, and it needs to produce an IAccessible immediately.

So you enter the context, create the object, but now you have to figure out how to take the

object with you when you exit the context (transforming it from a direct reference to a

proxy), so you can return it to the caller.

I discussed some options some time ago. One is to use RoGetAgileReference to obtain an

agile reference to your IAccessible . You can move this agile reference freely between

contexts and apartments, so you can take that out of the context, then convert it back to an

IAccessible to return to your caller.

Another option is to marshal the interface into a stream and take the stream with you out of

the context, then reconstitute the interface from the stream once you’re safely outside.

(I suspect the first way is implemented in terms of the second way.)

All this time, I’ve been talking about getting into and out of this context, but never actually

showing how to do it. Next time, we’ll look at the mechanics.

¹ The plug-in’s model may not actually require you to unload. After all, you can force yourself

to linger by doing a bonus LoadLibrary on yourself. But you want to go along with it, just

to be a good citizen. Or perhaps you want to unload so that you can update the DLL. This is

handy during development, since you can go to the host process, tell it to unload the

extension, then rebuild and redeploy the extension, then ask the host process to reload the

extension.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20151020-00/?p=91321
https://devblogs.microsoft.com/oldnewthing/20151021-00/?p=91311
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

