
1/1

November 15, 2019

Why does my single-threaded program have multiple
threads?

devblogs.microsoft.com/oldnewthing/20191115-00

Raymond Chen

You’ve written a simple single-threaded program, but when you look in Task Manager, it says

that the program has two or even more threads. What’s going on?

Even though your program doesn’t create any threads, a library used by your program might

create threads, and the system itself might create threads.

For example, if you call the SHFileOperation function to copy some files, the shell may

create additional threads to assist with the file copy operation. For example, the progress UI

could be shown on the UI thread, with a separate thread used to perform the disk access.

Even after the multithreaded operation is complete, you may see threads lingering in the

process because the multithreaded operation may have used the thread pool. Every process

has a default thread pool which is created upon demand, and is destroyed at process

termination.

If you are a console application, then the system creates an additional thread in your process

in order to handle and deliver console control notifications.

In more recent versions of Windows 10 (I forget exactly when it started), the loader takes

advantage of the thread pool to speed up loading DLLs into memory. This means that in

practice, by the time the first line of code in your application starts to execute, the process

default thread pool has already been created in order to load the DLLs your application uses.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20191115-00/?p=103102
https://docs.microsoft.com/en-us/windows/desktop/ProcThread/thread-pools
https://devblogs.microsoft.com/oldnewthing/20120427-00/?p=7763
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

