
1/2

November 14, 2019

Can the MTA thread exit while keeping its COM class
registrations alive?

devblogs.microsoft.com/oldnewthing/20191114-00

Raymond Chen

A customer has an app whose main thread is a single-threaded apartment (STA). The app

also has a dedicated multi-threaded apartment (MTA) thread whose job is to register some

class objects. Right now, they register the objects on the dedicated thread and hold the thread

hostage for the lifetime of the process.

Here’s a sketch of what they do:

// thread start

CoInitializeEx(nullptr, COINIT_MULTITHREADED);

CoRegisterClassObject(CLSID_Something1, something1Factory,

 CLSCTX_LOCAL_SRVER, REGCLS_MULTI_SEPARATE, &token1);

CoRegisterClassObject(CLSID_Something2, something2Factory,

 CLSCTX_LOCAL_SRVER, REGCLS_MULTI_SEPARATE, &token2);

// etc.

PumpMessageAndWaitForAnExitSignal();

// Clean up

CoRevokeClassObject(token1);

CoRevokeClassObject(token2);

// etc.

CoUninitialize();

// end of thread

The sole purpose of the thread is to keep the MTA alive for the class factories that it

registered.

The customer wanted to know if there was a way to register the class factories and then exit

the thread immediately. That way, they don’t need to burn a thread for the sole purpose of

keeping the MTA alive.

https://devblogs.microsoft.com/oldnewthing/20191114-00/?p=103100

2/2

Normally, when the last MTA thread exits, the class factories are automatically unregistered,

so exiting the thread doesn’t seem to be a good idea. But we can put CoIncrementMTAUsage

to work for us: We can use it to keep the MTA alive despite not having a thread dedicated to

it. This is the same trick we used some time ago to avoid creating an accidental choke point

when handing work to a background thread.

// thread start

CoInitializeEx(nullptr, COINIT_MULTITHREADED);

CoRegisterClassObject(CLSID_Something1, something1Factory,

 CLSCTX_LOCAL_SRVER, REGCLS_MULTI_SEPARATE, &token1);

CoRegisterClassObject(CLSID_Something2, something2Factory,

 CLSCTX_LOCAL_SRVER, REGCLS_MULTI_SEPARATE, &token2);

// etc.

CoIncrementMTAUsage(&cookie);

CoUninitialize();

// end of thread

Later, when you decide that it’s time to clean up:

// Clean up

CoRevokeClassObject(token1);

CoRevokeClassObject(token2);

// etc.

CoDecrementMTAUsage(cookie);

The MTA usage cookie keeps the MTA alive without requiring a dedicated thread.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190215-00/?p=101054
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

