
1/3

November 11, 2019

The curious pattern of pre-emptively rejecting the
solution to your problem: Redrawing during resizing

devblogs.microsoft.com/oldnewthing/20191111-00

Raymond Chen

A customer had a program that drew a little bit of content against the right-hand edge of its

client area. They found that when the user resized the window from small to large, they got

bad rendering:

X
X
X
X
X

The customer added, “If we add the CS_ HREDRAW window style, then the problem goes

away, but we don’t want to use it.”

This is another curious case of pre-emptively rejecting the solution to your problem. They

found the answer, and then asked for a way to solve the problem without using the answer.

Upon pressing further, we learned that the reason they don’t want to use the CS_ HREDRAW

window style is that it introduces flicker.

You can solve that by using a flicker-free updating model, like double-buffering.

But suppose they don’t want to do double-buffering, for whatever reason. Maybe the cost of a

full repaint is too high, and they don’t want to repaint the parts that didn’t change.

What you can do is invalidate only the part that needs to be redrawn.

Let’s demonstrate the problem with a simplified version that merely draws a thin border

along the right edge. This is basically laziness on my part so I don’t have to deal with fonts.

Start with the scratch program and make these changes:

https://devblogs.microsoft.com/oldnewthing/20191111-00/?p=103086
https://devblogs.microsoft.com/oldnewthing/20130206-00/?p=5333
https://devblogs.microsoft.com/oldnewthing/20030723-00/?p=43073

2/3

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

 RECT rc;

 GetClientRect(hwnd, &rc);

 Polyline(pps->hdc, (POINT*)&rc, 2);

 rc.left = rc.right - 2;

 FillRect(pps->hdc, &rc, GetSysColorBrush(COLOR_DESKTOP));

}

In addition to drawing a two-pixel border along the right edge, the program also draws a

diagonal line inside the window. This lets you see whether any unrelated content was

repainted.

Observe that as-is, the program exhibits the problem when you resize the window wider.

Observe also that this change fixes the problem:

 wc.style = CS_HREDRAW;

However, it comes at a cost of redrawing the entire window, as evidenced by the fact that the

diagonal line is always updated to match the window size.

Okay, change that line back to wc.style = 0; because we are going to try to solve the

problem without triggering a full repaint.

What we want to do is be informed when the window is about to be resized, so we can

invalidate the last two pixels. Enter the WM_ WINDOWPOSCHANGING message. This message is

sent as part of the resizing operation. The window size hasn’t changed yet, but it’s about to!

BOOL OnWindowPosChanging(HWND hwnd, WINDOWPOS* lpwpos)

{

 if (!(lpwpos->flags & SWP_NOSIZE)) {

 RECT rc;

 GetClientRect(hwnd, &rc);

 rc.left = rc.right - 2;

 InvalidateRect(hwnd, &rc, TRUE);

 }

 return FORWARD_WM_WINDOWPOSCHANGING(hwnd, lpwpos, DefWindowProc);

}

 HANDLE_MSG(hwnd, WM_WINDOWPOSCHANGING, OnWindowPosChanging);

When we are informed that the window position is about to change, we check whether it’s

due to a change in size. If so, then we get the client rectangle (which will be the old client

rectangle) and invalidate the last two columns of pixels, which is exactly the size of the right-

aligned content. We then allow the message to be processed normally.

When you run this program, you’ll notice two things:

3/3

1. The two-pixel border on the right hand side draws correctly. In particular, the previous

border erases when the window changes width.

2. The main content of the window does not repaint. You can see this because the diagonal

line is drawn from corner to corner of the old window size.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

