
1/5

October 24, 2019

If you want to terminate on an unexpected exception,
then don’t sniff at every exception; just let the process
terminate

devblogs.microsoft.com/oldnewthing/20191024-00

Raymond Chen

You’ve probably had to write code that lives at the boundary between exception-based code

and error-code-based code.

https://devblogs.microsoft.com/oldnewthing/20191024-00/?p=103022

2/5

HRESULT ConvertExceptionToHResult()

{

 try

 {

 throw;

 }

 catch (MyCustomExceptionClass const& ex)

 {

 return ex.GetHResult();

 }

 catch (std::bad_alloc const&)

 {

 return E_OUTOFMEMORY;

 }

 catch (...)

 {

 // Disallowed exception. Fail fast and get a crash dump.

 std::terminate();

 }

}

HRESULT DoSomething()

{

 try

 {

 DoStuffThatMayThrowExceptions();

 AnotherThingThatMayThrowExceptions();

 }

 catch (...)

 {

 return ConvertExceptionToHResult();

 }

}

The idea is that the DoSomething function uses an error code to report problems, but it is

built with the help of functions that use exceptions to report problems. The DoSomething

function sets up a try / catch that catches any exceptions that may emerge from the

helper functions and uses a helper function to convert the exception to an HRESULT . If the

exception cannot be converted to an HRESULT , then we terminate the process, because the

helper functions threw a disallowed exception.

This works, but it does have a problem: When the inevitable crash reports arrive that say “Oh

no, somebody threw a disallowed exception.” The stack trace won’t tell you.

Let’s illustrate with a quick little program.

3/5

#include <cstdlib>

#include <new>

#include <exception>

#include <errno.h>

struct MyCustomExceptionClass

{

 int code;

};

int oopsie()

{

 int value = std::rand();

 if (value >= 0) throw 1; // totally disallowed exception

 return value;

}

int victim() try

{

 return oopsie();

}

catch (MyCustomExceptionClass const& ex)

{

 return ex.code;

}

catch (std::bad_alloc const& ex)

{

 return ENOMEM;

}

catch (...)

{

 std::terminate();

}

int main()

{

 return victim();

}

I’m taking advantage of a feature known as the function try block that lets you float the

try / catch outside the function body. This is handy because it saves you a level of

indentation and makes it clearer (to those who have been initiated into the practice) that the

try / catch block applies to the entire function body.

When you run this program, it crashes, and all you see on the stack is the victim .

_exit+0x11

abort+0xe8

terminate+0x3b

victim+0x5b ⇐ no sign of oopsie

main+0xd

https://en.cppreference.com/w/cpp/language/function-try-block

4/5

You may be able to extract the object that was thrown, but the code that threw it has already

left the building.

Why is that?

The problem is that your catch (...) was a successful catch. You said, “Sure, I’ll catch

anything!” If the thrown object doesn’t match any of the earlier clauses, the runtime says,

“Okay, the code says it’ll catch anything. That’s great! Let me do my stack unwinding, then.

Destructing automatic variables whose scopes have exited. All that great RAII stuff.” After

the destructors have run and the stack has unwound, execution resumes in your handler. You

successfully handled the exception.

Of course, if your code that successfully handles the exception chooses to terminate the

process, well, that’s your choice. But the code that threw the original exception is long gone.

The solution is simple: Don’t catch what you can’t handle.

void victim() noexcept try

{

 oopsie();

}

catch (MyCustomExceptionClass const& ex)

{

 return ex.code;

}

catch (std::bad_alloc const& ex)

{

 return ENOMEM;

}

// catch (...)

// {

// std::terminate();

// }

We removed the catch (...) so that any exceptions we don’t understand are not handled.

And then we added noexcept to the function signature to indicate that the process should

terminate if an exception goes unhandled.

This time, the stack in the crash dump is more useful:

https://devblogs.microsoft.com/oldnewthing/20100730-00/?p=13273

5/5

_exit+0x11

abort+0xe8

terminate+0x3b

FindHandler+0x377

__InternalCxxFrameHandler+0xf7

__CxxFrameHandler2+0x26

ExecuteHandler2+0x26

ExecuteHandler+0x24

KiUserExceptionDispatcher+0x26

RaiseException+0x62

_CxxThrowException+0x68

oopsie+0x2c ⇐ here's the bad boy

victim+0x3a

main+0x33

The C++ standard leaves it up to the implementation whether stack unwinding occurs, but

the Visual C++ compiler does not unwind the stack. This means that the code that threw the

exception is plain to see on the stack, and you can walk up the stack and look at local

variables. Even better: No destructors have run, so the state of the process in the dump is the

state at the time of the throw.

0:000> .frame 5

05 02a9fba0 00751e0a scratch!oopsie+0x2c

0:000> dv

 value = 0n41

Those local variables may end up being crucial to understanding why the disallowed

exception was thrown.

C++/WinRT made this change in PR 423.

Raymond Chen

Follow

https://github.com/microsoft/xlang/pull/423/files/454ce28968f0cfa7bbaad4aa1f276180d167e200#diff-ae563b582156e11a6cfea0687f8b47da
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

