
1/3

October 23, 2019

Why can’t I create a “Please wait” dialog from a
background thread to inform the user that the main UI
thread is busy?

devblogs.microsoft.com/oldnewthing/20191023-00

Raymond Chen

A customer had a program which performed a long-running operation on its main UI thread.

They wanted to display a “Please wait” dialog from a background thread, so they did

something like this:

void OnClick(HWND mainWindow)

{

 PleaseWaitDialog dialog;

 dialog.Start(mainWindow);

 DoSomeReallyLongOperation();

 dialog.Stop();

}

class PleaseWaitDialog

{

 void Start(HWND mainWindow)

 {

 ...

 m_mainWindow = mainWindow;

 CreateThread(nullptr, 0,

 PleaseWaitThreadProc, this,

 0, &threadId);

 ...

 }

 static DWORD CALLBACK PleaseWaitThreadProc(void* parameter)

 {

 auto self = reinterpret_cast<PleaseWaitDialog*>(parameter);

 DialogBox(instance, MAKEINTRESOURCE(IDD_WAIT),

 self->mainWindow, DialogProc);

 return 0;

 }

 HWND m_mainWindow;

};

https://devblogs.microsoft.com/oldnewthing/20191023-00/?p=103020

2/3

The PleaseWaitDialog class is incomplete, but that’s the general idea: We create a

separate thread to display the dialog box, and make it modal to the main window so the user

can see which window it is associated with.

The problem is that this doesn’t work.

When the dialog box sets the main UI window as its owner, this causes the input queues to

become attached, at which point their fates become linked. In particular, the dialog box

cannot show itself because doing so requires it to notify the owner window that the owner

has lost activation, but that owner window is not responding to messages because it’s off

doing the really long operation.

There are a few ways to address this.

One way is to make the long-running operation pump messages occasionally:

void HandleMessages()

{

MSG msg;

while (PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE)) {

 TranslateMessage(&msg):

 DispatchMessage(&msg):

}
}

void DoSomeReallyLongOperation()

{

 for (auto&& item : items) {

 item.DoSomething();

 HandleMessages(); // pump messages between each item

 }

}

void Item::DoSomething()

{

StartSomething();

HandleMessages(); // pump messages to remain responsive

ContinueSomething();

HandleMessages(); // pump messages to remain responsive

FinishSomething();

}

This does require you to litter HandleMessages calls throughout your long-running

operation. If your operation is cancellable, then you could have the HandleMessages

function return whether the user clicked the Cancel button in the Please Wait dialog, and

callers could abandon the operation.

https://devblogs.microsoft.com/oldnewthing/20130619-00/?p=4043

3/3

This improves the situation from unresponsive to sluggishly responsive, because the UI

thread doesn’t respond to actions immediately; rather, it responds to them only when it

remembers to check.

A more serious problem with this design is that pumping messages may create reentrancy

problems. For example, if a message arrives like WM_ SETTINGSCHANGE , the program may

start responding to the change in settings while it was in the middle of an operation, and that

might confuse the operation already in progress. For example, an incoming message might

trigger a change to the items collection, which is bad news because the for loop is

iterating over that same collection. It might even destroy the item that the loop is actively

operating on!

The best way to solve the problem is to switch the roles of the two threads. The UI thread

displays the progress dialog, and the background thread performs the long-running

operation.

Of course, due to architectural decisions made elsewhere in the program, this is often easier

to say than to do.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

