
1/4

September 17, 2019

How to split out pieces of a file while preserving git line
history: The hard way with commit-tree

devblogs.microsoft.com/oldnewthing/20190917-00

Raymond Chen

Last time, we looked at how to split a single file into multiple files while preserving line

history. A related scenario is where you want to extract some pieces of a file into separate

files, but leave some pieces behind.

Let’s use the same scratch repo we had last time. You can follow the same copy/paste script,

or you can take your existing scratch repo and git reset --hard ready to get it back into

its “ready to start experimenting” state.

First, we’re going to do things the hard (but more information-theoretically correct) way, and

then we’ll develop a simpler alternative that gets the same result, though through some

potentially-confusing intermediate steps.

Okay, to do things the hard way, we split out each file in its own branch.

git checkout -b f2f

git mv foods fruits

git commit --author="Greg <greg>" -m "create fruits from foods"

We start by renaming foods to fruits . This ensures that when git traces the history of

the fruits file, it will follow the history back into the foods file.

Next, we split the fruits file back into two files: The fruits stay in the fruits file, and

the rest go back into the foods file.

https://devblogs.microsoft.com/oldnewthing/20190917-00/?p=102894
https://devblogs.microsoft.com/oldnewthing/20190916-00/?p=102892

2/4

>foods echo celery

>>foods echo cheese

>>foods echo eggs

>>foods echo lettuce

>>foods echo milk

>>foods echo peas

git add foods

>fruits echo apple

>>fruits echo grape

>>fruits echo orange

git commit --author="Greg <greg>" -am "split fruits from foods"

git checkout -

Repeat for the other files you want to split out. Let’s say we also want to split out the veggies.

git checkout -b f2v

git mv foods veggies

git commit --author="Greg <greg>" -m "create veggies from foods"

>foods echo apple

>>foods echo cheese

>>foods echo eggs

>>foods echo grape

>>foods echo milk

>>foods echo orange

git add foods

>veggies echo celery

>>veggies echo lettuce

>>veggies echo peas

git commit --author="Greg <greg>" -am "split veggies from foods"

git checkout -

Then we octopus the branches together. However, the octopus will fail because the changes

don’t merge cleanly, so we’ll have to do a manual octopus, like we did before.

https://devblogs.microsoft.com/oldnewthing/20190515-00/?p=102495

3/4

>foods echo cheese

>>foods echo eggs

>>foods echo milk

>fruits echo apple

>>fruits echo grape

>>fruits echo orange

>veggies echo celery

>>veggies echo lettuce

>>veggies echo peas

git add foods fruits veggies

git write-tree

The git write-tree will emit a tree that represents the state of the index. We set up the

index so that it contains the desired final state: The fruits have been put into fruits , the

veggies into veggies , and the leftovers stay in foods .

Now to do the manual octopus merge.

git commit-tree 〈tree-hash〉 -p HEAD -p f2f -p f2v -m "split out fruits and veggies
from foods"

The git commit-tree will print a hash. This is the commit that is the result of the octopus

merge. We can fast-forward to it.

git merge --ff-only 〈commit-hash〉

Okay, let’s see what we ended up with.

git blame fruits

^e7a114d foods (Alice 2019-09-16 07:00:00 -0700 1) apple

86348be4 foods (Bob 2019-09-16 07:00:01 -0700 2) grape

34eb5bd1 foods (Carol 2019-09-16 07:00:02 -0700 3) orange

git blame veggies

^e7a114d foods (Alice 2019-09-16 07:00:00 -0700 1) celery

86348be4 foods (Bob 2019-09-16 07:00:01 -0700 2) lettuce

34eb5bd1 foods (Carol 2019-09-16 07:00:02 -0700 3) peas

git blame foods

^e7a114d (Alice 2019-09-16 07:00:00 -0700 1) cheese

86348be4 (Bob 2019-09-16 07:00:01 -0700 2) eggs

34eb5bd1 (Carol 2019-09-16 07:00:02 -0700 3) milk

Next time, we’ll look at how to do this the easy way.

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

