
1/2

September 2, 2019

If FlushInstructionCache doesn’t do anything, why do
you have to call it, revisited

devblogs.microsoft.com/oldnewthing/20190902-00

Raymond Chen

You are supposed to call the FlushInstructionCache function when you generate or

modify code at runtime, so that when the CPU tries to execute the newly-generated or newly-

modified modified code, it will read the instructions you wrote, rather than any instructions

that may be hanging around in the instruction cache.

Some time ago, we saw that on Windows 95, the FlushInstructionCache function didn’t

do anything aside from returning. That’s because the mere act of calling a function was

sufficient to flush the instruction cache.

On Windows NT, however, the FlushInstructionCache function does actual work, since it

needs to notify all the other processors of the need to flush their instruction caches, too.

But if you look at Windows 10, you may find that the FlushInstructionCache function

looks like the Windows 95 version: It doesn’t do anything.

What’s going on?

Whether the FlushInstructionCache function “does anything” depends on which

processor you’re using. Some processors have an integrated data and instruction cache, in

which case the FlushInstructionCache function doesn’t need to do anything. Others such

as ARM still have separate instruction and data caches, and in those cases, flushing does real

work. Whether the FlushInstructionCache function “does anything” depends on the

processor architecture it was compiled for.

As a programmer, you should just call the FlushInstructionCache function and let the

operating system figure out whether flushing will actually need to “do anything”.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190902-00/?p=102828
https://devblogs.microsoft.com/oldnewthing/20031208-00/?p=41583
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

