
1/6

August 23, 2019

The SuperH-3, part 15: Code walkthough
devblogs.microsoft.com/oldnewthing/20190823-00

Raymond Chen

Once again, we wrap up our processor retrospective series by walking through a simple

function from the C runtime library.

extern FILE _iob[];

int fclose(FILE *stream)

{

 int result = EOF;

 if (stream->_flag & _IOSTRG) {

 stream->_flag = 0;

 } else {

 int index = stream - _iob;

 _lock_str(index);

 result = _fclose_lk(stream);

 _unlock_str(index);

 }

 return result;

}

Here’s the corresponding disassembly.

; int fclose(FILE *stream)

; {

 mov.l r8,@-r15 ; push r8

 mov.l r9,@-r15 ; push r9

 mov.l r10,@-r15 ; push r10

 sts.l pr,@-r15 ; save return address

 add #-16,r15 ; allocate space for outbound calls

We start by saving the nonvolatile registers that we are going to be using as local variables in

this function. Next, we allocate space on the stack to act as home space for our outbound

calls. Most function start this way.

 mov r4,r9 ; r9 = stream

https://devblogs.microsoft.com/oldnewthing/20190823-00/?p=102798

2/6

This function enregisters the stream parameter, so save it from the volatile r4 register into

a non-volatile register r9. Other register variables are going to be r10 for result and r8 for

index .

; int result = EOF;

;

; if (stream->_flag & _IOSTRG) {

 mov.l @(12,r9),r3 ; r3 = stream->_flag

 mov #64,r2 ; r2 = _IOSTRG

 and r2,r3 ; r3 = stream->_flag & _IOSTRG

 tst r3,r3 ; is it zero?

 bt/s isfile ; Y: so it's a file

 mov #-1,r10 ; Set r10 = EOF

To test the flag, we load the value into a register (r3), load the constant 0x40 into another

register so we can AND them together and test the result. The TST instruction implicitly

tests against zero, so a branch if true means branch if zero. If the result is indeed zero, then

we branch to the string handling case, but not before setting r10 to -1 , which initializes

the result variable.

; stream->_flag = 0;

; }

 mov #0,r3 ; prepare to store zero

 bra done ; and we're done

 mov.l r3,@(12,r9) ; stream->_flag = 0

 ; (in the branch delay slot)

If we have a string, then we set _flag to 0 by loading the constant zero into a register and

storing it. Then we jump to the common exit code.

; } else {

; int index = stream - _iob;

isfile:

 mov.l @(42,pc),r2 ; #0x10004080 ; load constant address of _iob

 mov r9,r8 ; r8 = stream

 mov #-5,r3 ; prepare to shift right 5 places

 sub r2,r8 ; r8 = stream - _iob (byte offset)

 shad r3,r8 ; index = stream - _iob (element offset)

The FILE structure is a convenient 32 bytes in size, so the byte offset can be converted to an

element offset by a simple shift. There is no right-shift-by-5 instruction, so we have to do a

variable shift. There is no right-shift-by-variable instruction, so we instead do a left shift by

the negative, because the left-shift instruction SHAD can shift both left or right, depending

on the sign of the shift amount.

3/6

; _lock_str(index);

`

 mov.l @(36,pc),r3 ; #0x10001040 ; address of _lock_str

 jsr @r3 ; call it

 mov r8,r4 ; copy parameter from r8 = index

To call the _lock_str function, we put the index parameter in r4 (in the delay slot), load

up the address of the function, and then call it.

; result = _fclose_lk(stream);

`

 mov.l @(36,pc),r3 ; #0x10002130 ; address of _fclose_lk

 jsr @r3 ; call it

 mov r9,r4 ; copy parameter from r9 = stream

And another function call. Note that the displacement for the @(36,pc) is the same offset

as the previous one, yet it loads a different value. That’s because pc has changed!

; _unlock_str(index);

 mov.l @(32,pc),r3 ; #0x100010c8 ; address of _unlock_str

 mov r8,r4 ; copy parameter from r8 = index

 jsr @r3 ; call it

 mov r0,r10 ; save return value of _fclose_lk into result

And then call _unlock_str . This time, we also have to save the return value from

_fclose_lk so we can return it from the function.

; }

; return result;

; }

done:

 add #16,r15 ; clean the stack

 mov r10,r0 ; put return value into r0 register

 lds.l @r15+,pr ; pop return address

 mov.l @r15+,r10 ; pop r10

 mov.l @r15+,r9 ; pop r9

 rts ; return to caller

 mov.l @r15+,r8 ; pop r8

And we reach the function exit. We put the return value in the r0 register, because that’s

what the calling convention dictates. And we undo the stack operations we performed in the

function prologue: Clean the stack and pop off the registers.

But wait, we’re not done yet. We have those constants in the code segment that we need to

generate.

4/6

 .data.l _iob

 .data.l _lock_str

 .data.l _fclose_lk

 .data.l _unlock_str

When you look at the disassembly, these data bytes are going to be disassembled as if they

were code, because the disassembler doesn’t know that they’re actually data. You just have to

understand that nonsense instructions after an unconditional branch are likely to be data.

Bonus chatter: Here’s my attempt to hand-optimize the assembly.

First observation is that enregistering a variable that is used only once costs the same as

spilling it. If you spill it, you write it to memory once and load it from memory once. If you

enregister it, you write the original register to memory once, and restore it from memory

once. Either way, you perform one read and one write. This means that the stream variable

may as well be spilled.

Second observation is that there is really only one interesting live variable across each of the

calls. Either we are saving the index, or saving the result. So we can use the same register to

hold both.

And the third observation is that the compiler didn’t take advantage of the free home space.

 mov.l r8,@(12,r15) ; save r8 in parameter 4 home space

 sts.l pr,@(8,r15) ; save pr in parameter 3 home space

 mov.l r4,@(4,r15) ; save stream in parameter 2 home space

I have 16 bytes of free memory, so I use it instead of pushing values onto the stack. I used 12

bytes of my home space, so I need to allocate 12 bytes of stack to get myself back up to 16

bytes of home space for the outbound function calls. I’ll interleave that with the next

sequence of instructions to try to avoid a load stall.

 mov.l @(12,r4),r3 ; r3 = stream->_flag

 add #-12,r15 ; allocate space for outbound calls

 mov #64,r2 ; r2 = _IOSTRG

 and r2,r3 ; r3 = stream->_flag & _IOSTRG

 tst r3,r3 ; is it zero?

 mov #-1,r0 ; return value is EOF (if it's a string)

 bf isstring ; N: so it's a string

The code to test the flag hasn’t really changed, but I moved the stack pointer adjustment into

this sequence to avoid the stall that occurs when we try to use r3 too soon after loading it

from memory. This delay of the stack pointer adjustment is legal because we are allowed to

advance instructions into the prologue provided they are not jumps and do not modify

nonvolatile registers.

5/6

There is a stall between the TST and the BF because we are consuming flags immediately

after generating them, so I slip a MOV instruction in there. The value is used only if the

branch is taken, but it does no harm in the fallthrough case, and we may as well try it, since

it’s a free instruction due to the stall.

; int index = stream - _iob;

; _lock_str(index);

 mov.l #_iob,r2 ; r2 = address of _iob

 mov r4,r8 ; r8 = stream

 mov.l #_lock_str,r0 ; address of _lock_str

 mov #-5,r3 ; prepare to shift right 5 places

 sub r2,r8 ; r8 = stream - _iob (byte offset)

 shad r3,r8 ; index = stream - _iob (element offset)

 jsr @r0 ; call _lock_str

 mov r8,r4 ; copy parameter from r8 = index

The code to calculate the index hasn’t really changed, but I interleave it with the preparation

to call _lock_str to avoid a load stall.

; result = _fclose_lk(stream);

`

 mov.l #_fclose_lk,r3 ; address of _fclose_lk

 jsr @r3 ; call it

 mov @(20,r15),r4 ; parameter 1 is the stream

This is the same as before, except we load the stream from memory because we didn’t

dedicate a register to it. This does mean that if the _fclose_lk function tries to access its

parameter within its first two instructions, it will suffer a load stall. (Normally, we’d have to

count four instructions, but there is a one-cycle pipeline bubble on a taken branch, so that

sucks up two of the instructions.) However, _fclose_lk is almost certainly going to have at

least one register variable, so those first two instructions are going to be occupied by spilling

r8 and pr. The earliest it is likely to access r4 is its third instruction, so we’re safe.

; _unlock_str(index);

 mov.l #_unlock_str,r3 ; address of _unlock_str

 mov r8,r4 ; copy parameter from r8 = index

 jsr @r3 ; call it

 mov r0,r8 ; save return value of _fclose_lk into r8

The trick here is that the result variable becomes live at the same moment that index

becomes dead, so we can use the same register r8 for both of them. After the function

returns, we put the saved value back into r0 so we can return it.

 bra done ; to common exit code

 mov r8,r0 ; put result back into r0 so we can return it

6/6

After _unlock_str returns, we go to our common exit code, with the desired return value

in r0.

; int result = EOF;

; stream->_flag = 0;

isstring:

 mov #0,r1 ; value to store into stream->_flag

 mov r1,@(12,r4) ; stream->_flag = 0

 ; r0 is already -1

In the string case, we just zero out the _flag and return -1 , which we preloaded into r0

prior to the branch into this code path. Then we fall through to the common exit code.

done:

 lds.l @(20,r15),pr ; recover return address

 add #12,r15 ; clean the stack

 rts ; return to caller

 mov.l @(12,r15),r8 ; restore r8

And we’re done. Our epilogue code is rather brief because we already put the desired return

value in the r0 register, and because we didn’t have a lot of saved registers to restore. I put

the add after the lds.l because I’m going to stall on the load delay, so I may as well get a

free instruction out of it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

