
1/5

August 19, 2019

The SuperH-3, part 11: Atomic operations
devblogs.microsoft.com/oldnewthing/20190819-00

Raymond Chen

The SH-3 has a very limited number of read-modify-write operations. To recap:

 AND.B #imm, @(r0, GBR) ; @(r0 + gbr) &= 8-bit immediate

 OR.B #imm, @(r0, GBR) ; @(r0 + gbr) |= 8-bit immediate

 XOR.B #imm, @(r0, GBR) ; @(r0 + gbr) ^= 8-bit immediate

 TAS.B @Rn ; T = (@Rn == 0), @Rn |= 0x80

These instructions are “atomic” in the sense that they occur within a single instruction and

are hence non-interruptible. Technically, only the last one is truly atomic in the sense that

the processor holds the data bus locked for the duration of the instruction.

Let’s not quibble about such details. Let’s just say we’re looking for non-interruptible

instructions.

The SH-3 does not support symmetric multiprocessing, so we don’t have to worry about

competing accesses from other main processors (although there may be competing accesses

from coprocessors or hardware devices). But how are we going to build atomic increment,

decrement, and exchange out of these guys?

Let’s be honest. We can’t.

We’ll have to fake it.

Windows CE takes a different approach from how Windows 98 created atomic operations on

a processor that didn’t support them.

On Windows CE, the kernel is in cahoots with the implementations of the interlocked

operations. If it discovers that it interrupted a special uninterruptible sequence, it resets the

program counter back to the start of the uninterruptible sequence before allowing user mode

to resume.¹ In this way, the kernel manufactures multi-instruction uninterruptible

sequences.

https://devblogs.microsoft.com/oldnewthing/20190819-00/?p=102790
https://devblogs.microsoft.com/oldnewthing/20190813-00/?p=102780
https://blogs.msdn.microsoft.com/oldnewthing/20040506-00/?p=39463

2/5

These sequences have to be carefully written so that they are restartable. This means that

they cannot mutate any input parameters, and there are no memory updates until the final

instruction in the sequence.

For example, we could try to implement our fake InterlockedIncrement like this:

; on entry:

; r4 = address to increment

; on exit:

; r0 = incremented value

InterlockedIncrement:

 mov.l @r4, r0 ; load current value ; (1)

 add #1, r0 ; increment it ; (2)

 mov.l r0, @r4 ; store updated value ; (3)

 rts ; return ; (4)

We load the current value from memory, add 1, store it back, and return. If this sequence is

interrupt at any point, the kernel moves the program counter back to the first instruction and

restarts the entire operation.

Let’s walk through the possible interrupts.

If interrupted prior to the first instruction, then moving the program counter back to

the first instruction has no effect because that’s where it already was. So no problems

there.

If interrupted prior to the second instruction, then we will perform the mov.l @r4,

r0 a second time. Since we haven’t changed r4, this will read the desired memory

location. It’s a redundant read, but at least it’s not harmful.

If interrupted prior to the third instruction, then we will reload and re-increment the

existing value. Again, since we haven’t changed r4, this will read the correct location.

If interrupted prior to the fourth instruction, then we’re in trouble. We have already

written the updated value back to memory, and restarting the operation will increment

it a second time! This code is broken.

Aha, but we forgot about the branch delay slot of the rts instruction, and in fact it’s the

branch delay slot that provides our escape hatch: Move the final store into the branch delay

slot.

3/5

; on entry:

; r4 = address to increment

; on exit:

; r0 = incremented value

InterlockedIncrement:

 mov.l @r4, r0 ; load current value ; (1)

 add #1, r0 ; increment it ; (2)

 rts ; return ; (3)

 mov.l r0, @r4 ; store updated value ; (4)

Okay, let’s run our analysis again.

If interrupted prior to the first instruction, our analysis from above is still correct.

If interrupted prior to the second instruction, our analysis from above is still correct.

If interrupted prior to the third instruction, our analysis from above is still correct.

An interrupt between the third and fourth instruction is not possible because the

processor disables interrupts between a delayed branch instruction and its delay slot.

But if an exception occurred (say, because the memory was copy-on-write), we can

safely restart the operation because we haven’t modified r4 or the value in memory at

r4.²

If interrupted after the fourth instruction, then the program counter isn’t in our special

code region, so the kernel won’t restart the sequence.

The branch delay slot saved us!

You never thought you’d see the day when you’d be thankful for a branch delay slot.

The kernel puts these special uninterruptible sequences in a contiguous region of memory.

Let’s say that it starts each special uninterruptible sequence on a 16-byte boundary. This

means that the “special uninterruptible sequence detector” can go something like this:

 mov.l @(usermode_pc), r0 ; see where we're returning to

 mov.l #start_of_sequences, r1 ; the start of our special sequences

 mov #length_of_sequences, r2 ; the size in bytes

 sub r1, r0

 cmp/hs r0, r2 ; is it in the magic region?

 bf fixme ; Y: then go fix it

return_to_user_mode:

 ... continue as usual ...

fixme:

 mov #-15, r2 ; mask out the bottom 4 bits

 and r2, r0 ; to go back to start of special sequence

 add r1, r0 ; convert from offset back to address

 bra return_to_user_mode

 mov.l r0, @(usermode_pc) ; update user mode program counter

4/5

This is not actually how it goes, but it gives you the basic idea. In reality, the special

uninterruptible sequences start on 8-byte boundaries, in order to pack them more tightly.

Sequences that are longer than 4 instructions need to be arranged so that every 8 bytes is a

valid restart point. I just used 16-byte sequences to make the explanation simpler.

For example, InterlockedCompareExchange really went like this:

; on entry:

; r4 = address of value to test

; r5 = replacement value (if current value matches expected value)

; r6 = expected value

; on exit:

; r0 = previous value

InterlockedCompareExchange:

 mov.l @r4, r0 ; load current value

 cmp/eq r0, r6 ; is it the expected value?

 bf nope ; Nope, just return current value

 mov.l r5, @r4 ; Store the replacement value

nope:

 rts

 nop

There is a second restart point after four instructions, at the rts , and it’s okay to restart

there because the operation is complete. All we’re doing is returning to our caller.

This trick for creating restartable multi-instruction sequences was not unique to the SH-3.

Windows CE employed it to synthesize pseudo-atomic operations for other processors, too.

One curious side effect of this design for restartable multi-instruction sequences is that you

can’t debug them! If you try to single-step through these multi-instruction sequences, you’ll

get stuck on the first instruction: The breakpoint will fire, and the kernel will reset the

program counter back to the first instruction.

Next time, we’ll look at the Windows CE calling convention.

Bonus chatter: The SH-4A processor added load-locked and store-conditional instructions,

bringing it in line with other RISC processors.

 MOVLI.L @Rm,r0 ; Load from @Rm, remember lock

 MOVCO.L r0,@Rn ; Store to @Rn provided lock is still valid

 ; T = 1 if store succeeded, 0 if failed

Bonus chatter 2: What about the TEB? Where does Windows keep per-thread

information?

https://devblogs.microsoft.com/oldnewthing/20190820-00/?p=102792

5/5

Turn out this is easier than it sounds. The SH-3 doesn’t support symmetric multiprocessing,

so there is only one processor, which therefore can be executing only one thread at a time. A

pointer to the per-thread information is stored at a fixed location, and that pointer is updated

at each thread switch.

¹ Fast Mutual Exclusion for Uniprocessors. Brian Bershad, David Redell, and John Ellis,

Proceedings of the fifth international conference on Architectural support for programming

languages and operating systems, 1992.

² Suppose an exception occurs in the delay slot because the memory isn’t writable, and the

exception handler fixes the problem (by making the memory writable on demand). Resuming

execution will rewind the instruction pointer back to the start of the sequence because the

memory value may have changed as part of handling the exception.

Raymond Chen

Follow

http://discolab.rutgers.edu/classes/cs519/papers/fast-mutex.pdf
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

