The SuperH-3, part 8: Bit shifting

=. devblogs.microsoft.com/oldnewthing/20190814-00

August 14, 2019

&
Raymond Chen
The bit shifting operations are fairly straightforward.
; arithmetic (signed) shifts
SHAL Rn ; Rn <<= 1, T = the bit shifted out

SHAR Rn ; Rn >>= 1, T = the bit shifted out

; logical (unsigned) shifts

SHLL Rn ; Rn <<= 1, T = the bit shifted out
SHLR Rn ; Rn >>= 1, T = the bit shifted out
SHLL2 Rn ; Rn <<= 2
SHLR2 Rn ; Rn >>= 2
SHLL8 Rn ; Rn <<= 8
SHLR8 Rn ; Rn >>= 8
SHLL16 Rn ; Rn <<= 16
SHLR16 Rn ; Rn >>= 16

You cannot shift by arbitrary constant amounts. Only certain fixed values are permitted. If
you want to shift left by, say, 9, you’ll have to construct it froma SHLL8 anda SHLL .

Note also that SHAL and SHLL are functionally equivalent. But they have different
encodings, so the designers burned an opcode for a redundant operation.

There are no “large shift” options for right shifts. You can perform multiple one-bit shifts, or
use a variable shift:

SHAD Rm, Rn ; if Rm > 0: Rn <<= (31 & Rm)
; 1f Rm = 0: nop
; if Rm < 0: Rn >>= (31 & -Rm), signed

(o]

SHLD Rm, Rn ; if Rm > 0: Rn <<= (31 & Rm)
; 1f Rm = 0: nop
; 1f Rm < 0: Rn >>= (31 & -Rm), unsigned

(o]

Note that these shift instructions shift both left and right, depending on the sign of the shift
amount. If you want to shift right by an amount in a register, you therefore need to negate the
value, and then shift left.

1/2


https://devblogs.microsoft.com/oldnewthing/20190814-00/?p=102782

Finally, we have rotation.

ROTL Rn ; rotate left, T contains carried-out bit
ROTR Rn ; rotate right, T contains carried-out bit
ROTCL Rn ; 33-bit rotate through T
ROTCR Rn ; 33-bit rotate through T

The rotation instructions rotate either a 32-bit or 33-bit value by one position. For the 32-bit
rotations, the bit that rotated off the end is copied to T. For the 33-bit rotations, the T flag
acts as the 33rd bit.

We saw earlier that there is no NEGV instruction. To detect overflow from a negation, you
just have to check for the value 0x80000000 directly. Here’s the shortest sequence I could
come up with:

; branch if Rn equals 0x80000000

rotl Rn ; rotate left one bit

dt Rn ; decrement and test for zero
bt underflow ; Y: underflow occurred

The result of the DT is zero if the previous value was 1, and the previous value was 1 if the
original value was 0x80000000 .

This is a destructive operation, so do it in a scratch register. You should have one available,
since it’s the source register for the NEGV you were checking.

We'll look more at constants next time.

Raymond Chen

Follow

2/2


https://devblogs.microsoft.com/oldnewthing/20190815-00/?p=102784
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

