
1/2

August 14, 2019

The SuperH-3, part 8: Bit shifting
devblogs.microsoft.com/oldnewthing/20190814-00

Raymond Chen

The bit shifting operations are fairly straightforward.

   ; arithmetic (signed) shifts

   SHAL Rn         ; Rn <<= 1, T = the bit shifted out

   SHAR Rn         ; Rn >>= 1, T = the bit shifted out


   ; logical (unsigned) shifts

   SHLL Rn         ; Rn <<= 1, T = the bit shifted out

   SHLR Rn         ; Rn >>= 1, T = the bit shifted out

   SHLL2 Rn        ; Rn <<= 2

   SHLR2 Rn        ; Rn >>= 2

   SHLL8 Rn        ; Rn <<= 8

   SHLR8 Rn        ; Rn >>= 8

   SHLL16 Rn       ; Rn <<= 16

   SHLR16 Rn       ; Rn >>= 16


You cannot shift by arbitrary constant amounts. Only certain fixed values are permitted. If

you want to shift left by, say, 9, you’ll have to construct it from a SHLL8  and a SHLL .

Note also that SHAL  and SHLL  are functionally equivalent. But they have different

encodings, so the designers burned an opcode for a redundant operation.

There are no “large shift” options for right shifts. You can perform multiple one-bit shifts, or

use a variable shift:

   SHAD Rm, Rn     ; if Rm > 0: Rn <<= (31 & Rm)

                   ; if Rm = 0: nop

                   ; if Rm < 0: Rn >>= (31 & -Rm), signed


   SHLD Rm, Rn     ; if Rm > 0: Rn <<= (31 & Rm)

                   ; if Rm = 0: nop

                   ; if Rm < 0: Rn >>= (31 & -Rm), unsigned


Note that these shift instructions shift both left and right, depending on the sign of the shift

amount. If you want to shift right by an amount in a register, you therefore need to negate the

value, and then shift left.

https://devblogs.microsoft.com/oldnewthing/20190814-00/?p=102782


2/2

Finally, we have rotation.

   ROTL Rn        ; rotate left, T contains carried-out bit

   ROTR Rn        ; rotate right, T contains carried-out bit

   ROTCL Rn       ; 33-bit rotate through T

   ROTCR Rn       ; 33-bit rotate through T


The rotation instructions rotate either a 32-bit or 33-bit value by one position. For the 32-bit

rotations, the bit that rotated off the end is copied to T. For the 33-bit rotations, the T flag

acts as the 33rd bit.

We saw earlier that there is no NEGV  instruction. To detect overflow from a negation, you

just have to check for the value 0x80000000  directly. Here’s the shortest sequence I could

come up with:

   ; branch if Rn equals 0x80000000

   rotl Rn        ; rotate left one bit

   dt   Rn        ; decrement and test for zero

   bt   underflow ; Y: underflow occurred


The result of the DT  is zero if the previous value was 1, and the previous value was 1 if the

original value was 0x80000000 .

This is a destructive operation, so do it in a scratch register. You should have one available,

since it’s the source register for the NEGV  you were checking.

We’ll look more at constants next time.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/20190815-00/?p=102784
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

