
1/2

August 13, 2019

The SuperH-3, part 7: Bitwise logical operations
devblogs.microsoft.com/oldnewthing/20190813-00

Raymond Chen

The SH-3 has a rather basic collection of bitwise logical operations.

   AND Rm, Rn          ; Rn &= Rm

   AND #imm, r0        ; r0 &= unsigned 8-bit immediate


   OR  Rm, Rn          ; Rn |= Rm

   OR  #imm, r0        ; r0 |= unsigned 8-bit immediate


   XOR Rm, Rn          ; Rn ^= Rm

   XOR #imm, r0        ; r0 ^= unsigned 8-bit immediate


   NOT Rm, Rn          ; Rn = ~Rm


Nothing fancy. No nor or nand or andnot or other goofy bitwise operations. Just plain vanilla

stuff. Do note that the 8-bit immediate is unsigned here.

There is also an instruction for testing bits wthout modifying anything other than the T flag.

   TST Rm, Rn              ; T = ((Rn & Rm) == 0)

   TST #imm, r0            ; T = ((r0 & signed 8-bit immediate) == 0)


The test instruction performs a bitwise and and compares the result with zero. In this case,

the 8-bit immediate is signed.

But wait, there’s something goofy after all: Load/modify/store instructions!

   AND.B #imm, @(r0, GBR)  ; @(r0 + gbr) &= 8-bit immediate

   OR.B  #imm, @(r0, GBR)  ; @(r0 + gbr) |= 8-bit immediate

   XOR.B #imm, @(r0, GBR)  ; @(r0 + gbr) ^= 8-bit immediate

   TST.B #imm, @(r0, GBR)  ; T = ((@(r0 + gbr) & 8-bit immediate) == 0)


These .B  versions of the bitwise logical operations operate on a byte in memory indexed by

the r0 and gbr registers. Okay, so TST.B  is not a load/modify/store; it’s just a load, but I

included it in this group because he wants to be with his friends.

In practice, the Microsoft compiler does not generate these instructions.

https://devblogs.microsoft.com/oldnewthing/20190813-00/?p=102780


2/2

Finally, we have this guy, the only truly atomic instruction in the SH-3 instruction set.

   TAS.B @Rn              ; T = (@Rn == 0), @Rn |= 0x80


The test-and-set instruction reads a byte from memory, compares it against zero (setting T

accordingly), and then sets the high bit and writes the result back out. This was clearly

designed for building low-level synchronization primitives, but I’m not sure anybody actually

uses it.

I say that it is the only truly atomic operation because it holds the data bus locked for the

duration of its operation. The load/modify/store instructions we saw above do not lock the

bus, so it’s possible for a coprocessor to modify the memory out from under the SH-3.

That’s it for the logical operations. Next up are the bit shifting operations.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/20190814-00/?p=102782
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

