
1/2

July 24, 2019

Adventures in application compatibility: Calling an
internal function

devblogs.microsoft.com/oldnewthing/20190724-00

Raymond Chen

We try hard to make sure applications continue to work, but some things that applications do

are so egregious that there’s no practical way of getting them to work.

Today, we’ll learn about one such.

The program bills itself as “the most advanced Windows optimization toolkit in the

universe!”

If you say so.

One of their awesome optimizations, it appears, is to reset file associations to match their

concept of what file associations should be in an ideal world. This ideal world probably is one

in which their application is the default handler for a lot of popular and contentious file

types.

The application compatibility team reported that this program crashed when you asked it to

reset file associations. Windows goes to some lengths to make it hard for programs to change

file associations programmatically, and instead of trying to reverse-engineer how Windows

protects the settings in the registry, they instead opted to reverse-engineer the code that

manages the settings.

Specifically, they scanned memory looking for the internal function that sets the file

associations, and then called it.

Now, searching all of memory is a daunting task, but they were able to take a shortcut: They

got their hands on an IApplicationAssociationRegistration object, which is the

documented interface for managing application defaults. They used the vtable as a clue as to

where the application defaults management code is, and focused their search on that region

of memory. I’m not quite sure exactly how they found the internal function; perhaps they

disassembled the code looking for call instructions, and assumed that the third call

(say) was to a handy function, and then they disassembled the handy function and assumed

that the second call (say) was to the secret internal function.

https://devblogs.microsoft.com/oldnewthing/20190724-00/?p=102730
https://devblogs.microsoft.com/oldnewthing/20170517-00/?p=96175

2/2

Of course, searching memory for a function to call is not exactly something documented and

supported. Windows made some changes to how these functions operate, and that threw off

their code that grovels the binary, and they ended up calling the wrong function.

Instead of creating a decoy that keeps their crazy algorithm working, the team opted to let the

program crash when you pushed the button to reset file associations to their ideal state. This

was an older version of a program still under active development, and the failure mode made

it rather clear to the user that the program was at fault: It crashes when you press a specific

button. The initial inclination is to blame that button. Therefore, the user will contact the

vendor for an update.

Now that everything is online, shifting the cost of a vendor’s mistake to the vendor’s support

infrastructure has become a viable alternative to patching the operating system to work

around a single program.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20031223-00/?p=41373
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

