
1/2

July 19, 2019

Providing a small amount of additional control over what
happens when an asynchronous I/O completes
synchronously

devblogs.microsoft.com/oldnewthing/20190719-00

Raymond Chen

The SetFileCompletionNotificationModes function gives you some control over how the

system behaves when an overlapped I/O completes synchronously.

The FILE_ SKIP_ COMPLETION_ PORT_ ON_ SUCCESS flag specifies that a completion is

not queued to the associated I/O completion port in the case the call completes

synchronously. In that case, you can reclaim the OVERLAPPED structure immediately, since

that is the last you will ever know about the I/O. Normally, there would be a completion

queued to the completion port, but since you suppressed even that, there’s nothing more

going on.

The other flag is more confusing. The FILE_ SKIP_ SET_ EVENT_ ON_ HANDLE flag

specifies that the I/O Manager “does not set the event for the file object.”

The phrase “the event for the file object” was written by someone wearing kernel-colored

glasses.

There is a secret event inside every file object. You cannot access this event directly, but you

can observe it by calling a function like WaitForSingleObject and passing it a file handle.

When you ask to wait on a file handle, the kernel waits on the secret event hiding inside the

file object.

This secret event is reset when the file operation starts, and it is set when the file operation

completes. This secret event is internally how the kernel implements I/O to synchronous file

handles: It issues an asynchronous I/O operation, and then waits on the file object.

You too can use this secret event by issuing an asynchronous I/O operation with

OVERLAPPED. hEvent = nullptr , and then waiting directly on the file handle. This is also

why the GetOverlappedResult function takes a handle as its first parameter: It waits on

the handle if the OVERLAPPED structure didn’t have an event handle in it.

https://devblogs.microsoft.com/oldnewthing/20190719-00/?p=102722
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setfilecompletionnotificationmodes
https://devblogs.microsoft.com/oldnewthing/20140206-00/?p=1853
https://devblogs.microsoft.com/oldnewthing/20110512-00/?p=10683

2/2

Of course, if you choose to rely on the secret kernel event, it is your own responsibility to

make sure you don’t have more than one I/O operation outstanding at a time, because there

is only one secret event. If you mistakenly have two I/O operations outstanding, then the first

one to complete will set the secret event, and the second one to complete will set the already-

set event, which has no effect.

The documentation for the FILE_ SKIP_ SET_ EVENT_ ON_ HANDLE flag is talking

about the secret event. It says that if you enable this feature on a handle, then the secret

event will not be set if the operation returns success (indicating synchronous completion) or

if it returns ERROR_ IO_ PENDING (indicating that the operation is continuing

asynchronously).

It’s hard for me to come up with a scenario where you would even need to do something like

this. The secret event is not something that is widely used, and given the fact that you have to

exercise special care to ensure you have at most one outstanding operation at a time, using

this secret event seems to be more trouble than it’s worth.

Bonus chatter: The documentation continues: “If an explicit event is provided for the

request, it is still signaled.” The explicit event being referred to here is the event passed in the

OVERLAPPED. hEvent member. That event is always set, regardless of whether the

operation completed synchronously or asynchronously, and regardless of whether the

FILE_ SKIP_ SET_ EVENT_ ON_ HANDLE feature was enabled on the file handle.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

