
1/2

July 8, 2019

Detecting in C++ whether a type is defined, part 1: The
initial plunge

devblogs.microsoft.com/oldnewthing/20190708-00

Raymond Chen

Warning to those who got here via a search engine: Don’t use this version. Keep

reading to the end of the series.

Suppose you want to be able to detect in C++ whether a type has been defined. For example,

maybe you want to use a type if it exists. This can happen if, say, you are a library like React

Native for Windows, and you need to be able to run with different versions of the Windows

SDK. Or you’re writing a library where the client can customize the behavior by defining

another class with a well-known name. Perhaps you’re trying to mimic C# partial classes.

My initial idea was to take advantage of unqualified name lookup by creating an alternate

definition for the type that sits at a lower priority than the one we’re looking for.

// awesome.h

namespace awesome

{

 // might or might not contain

 struct special { ... };

}

// your code

namespace detect::impl

{

 struct not_implemented {};

 using special = not_implemented;

}

namespace awesome::detect

{

 using namespace ::detect::impl;

 constexpr bool is_special_defined =

 !std::is_same_v<special, ::detect::impl::not_implemented>;

}

https://devblogs.microsoft.com/oldnewthing/20190708-00/?p=102664
https://github.com/Microsoft/react-native-windows
https://en.cppreference.com/w/cpp/language/unqualified_lookup

2/2

The idea here is that I declare an alternate version of the special structure in the

detect::impl namespace, and place it in the search order at a location that comes after

searching in the awesome namespace.

The using namespace ::detect ::impl; directive makes the names from the

detect::impl visible as if they had been declared in the global namespace. Why the global

namespace? Because the rule for using namespace is that the names from the imported-

from namespace are treated as if they had been declared in the namespace which is the

nearest common ancestor of the importing namespace and the imported-from namespace. In

our case, the imported-from namespace is ::detect ::impl and the importing

namespace is ::awesome ::detect . Since they don’t even share a common top-level

namespace, the nearest common ancestor is the global namespace.

Next, I check the name special . The unqualified name lookup searches in the following

order:

::awesome ::detect ::special

::awesome ::special

::special (which, thanks to our using namespace ::detect ::impl; directive

also searches in ::detect ::impl .)

There is definitely no special declared in the ::awesome ::detect namespace, so it

comes down to the other two. If it exists in the ::awesome namespace, then the unqualified

lookup will find that type; otherwise, it will find the one in the ::detect ::impl

namespace.

We then use std:: is_same_v to see whether the type we found is our fake one.

This works, but it’s awkward because you have to do the detection from inside the

::awesome ::detect namespace, since that’s where we set up the search order. For every

type you want to detect, you need to create an alias in the ::detect ::impl namespace

and a custom is_whatever_defined constant.

Next time, we’ll look at my second attempt.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

