
1/3

June 20, 2019

Getting a value from a std::variant that matches the type
fetched from another variant

devblogs.microsoft.com/oldnewthing/20190620-00

Raymond Chen

Suppose you have two std::variant objects of the same type and you want to perform

some operation on corresponding pairs of types.

using my_variant = std::variant<int, double, std::string>;

bool are_equivalent(my_variant const& left,

 my_variant const& right)

{

 if (left.index() != right.index()) return false;

 switch (left.index())

 {

 case 0:

 return are_equivalent(std::get<0>(left),

 std::get<0>(right));

 break;

 case 1:

 return are_equivalent(std::get<1>(left),

 std::get<1>(right));

 break;

 default:

 return are_equivalent(std::get<2>(left),

 std::get<2>(right));

 break;

 }

}

Okay, what’s going on here?

We have a std::variant that can hold one of three possible types. First, we see if the two

variants are even holding the same types. If not, then they are definitely not equivalent.

Otherwise, we check what is in the left object by switching on the index, and then check if

the corresponding contents are equivalent.

https://devblogs.microsoft.com/oldnewthing/20190620-00/?p=102604

2/3

In the case I needed to do this, the variants were part of a recursive data structure, so the

recursive call to are_equivalent really did recurse deeper into the data structure.

There’s a little trick hiding in the default case: That case gets hit either when the index is

2, indicating that we have a std:string , or when the index is variant_ npos , indicating

that the variant is in a horrible state. If it does indeed hold a string, then the calls to

std::get<2> succeed, and if it’s in a horrible state, we get a bad_variant_access

exception.

This is tedious code to write. Surely there must be a better way.

What I came up with was to use the visitor pattern with a templated handler.

bool are_equivalent(my_variant const& left,

 my_variant const& right)

{

 if (left.index() != right.index()) return false;

 return std::visit([&](auto const& l)

 {

 using T = std::decay_t<decltype(l)>;

 return are_equivalent(l, std::get<T>(right));

 }, left);

}

After verifying that the indices match, we visit the variant with a generic lambda and then

reverse-engineer the appropriate getter to use for the right hand side by studying the type of

the thing we were given. The std::get<T> will not throw because we already validated that

the types match. (On the other hand, the entire std::visit could throw if both left and

right are in horrible states.)

Note that this trick fails if the variant repeats types, because the type passed to std::get is

now ambiguous.

Anyway, I had to use this pattern in a few places, so I wrote a helper function:

template<typename Template, typename... Args>

decltype(auto)

get_matching_alternative(

 const std::variant<Args...>& v,

 Template&&)

{

 using T = typename std::decay_t<Template>;

 return std::get<T>(v);

}

https://en.cppreference.com/w/cpp/utility/variant/valueless_by_exception
https://en.cppreference.com/w/cpp/utility/variant/bad_variant_access

3/3

You pass this helper the variant you have and something that represents the thing you want,

and the function returns the corresponding thing from the variant. With this helper, the

are_ equivalent function looks like this:

bool are_equivalent(my_variant const& left,

 my_variant const& right)

{

 if (left.index() != right.index()) return false;

 return std::visit([&](auto const& l)

 {

 return are_equivalent(l,

 get_matching_alternative(right, l));
 });

}

I’m still not entirely happy with this, though. Maybe you can come up with something better?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

