
1/4

June 18, 2019

What is WofCompressedData? Does WOF mean that
Windows is a dog?

devblogs.microsoft.com/oldnewthing/20190618-00

Raymond Chen

A customer doing performance analysis of their program discovered that there were reads

from an alternate data stream called WofCompressedData. On the Internet, if you search for

“WofCompressedData”, you mostly see people wondering what it is. Some people suspect

that it’s malware, and others suspect (or even state confidently) that it’s an artifact of anti-

malware software and can be deleted.

What is WofCompressedData?

The documentation for wofapi.h says merely “This header is used by Data Access and

Storage.” For more information, it refers you to another web page that contains no additional

information.

WOF stands for Windows Overlay Filter, which is a nice name that doesn’t really tell you

much about what it does or what it’s for.

First, let’s look at how Windows was installed before the introduction of the Windows

Overlay Filter.

The Windows installation begins with a install.wim file that contains basically all of

Windows. A WIM file is a container file, similar in spirit to other container files, like ZIP and

Cabinet. Traditionally, the WIM file is copied to the recovery partition for use during

emergencies, such as push-button reset. The contents of the WIM file are then

uncompressed, and corresponding files are created on your boot volume, and it is these

uncompressed files that are used when you run Windows. The WIM file sits in your recovery

partition, ignored, but waiting for its opportunity to spring into action should the need arise.

This traditional layout means that every Windows system file is present twice: A compressed

copy is in the WIM file on the recovery partition, and an uncompressed copy in the live

Windows installation.

https://devblogs.microsoft.com/oldnewthing/20190618-00/?p=102597
https://docs.microsoft.com/en-us/windows/desktop/api/wofapi/
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/push-button-reset-overview

2/4

Windows 8.1 introduced a feature known as Windows Image File Boot (WIMBoot): A system

manufacturer can set up a system so that the recovery partition contains the install.wim

file as well as a custom.wim file which contains the OEM customizations, such as drivers

for any special hardware. But instead of uncompressing the files and putting them into the

live Windows installation, WIMBoot creates tiny little stub files in the live Windows

installation that say, “Hey, um, I’m just a stub. If you want to see the contents, you want to

uncompress those bytes over there.” WIMBoot therefore avoids the duplication by allowing

the live Windows installation to share the disk storage with the WIM file on the recovery

partition.

Furthermore, since the file contents in the WIM are compressed, this reduces disk I/O,

though naturally at a cost of higher CPU usage in order to perform the decompression.

The way this magic works is that the live Windows files are formally sparse NTFS files, so

that when you ask for the file size, you get the correct number, even though there is no actual

data in them. When you open the file, the Windows Overlay Filter steps in and generates the

data by decompressing the data in the WIM file on demand.

Unlike native NTFS file compression, the Windows Overlay Filter supports only read

operations. This means that it doesn’t need to sector-align each compressed chunk,¹ so the

compressed data can be packed more tightly together. If you open the file for writing,² the

Windows Overlay Filter just decompresses the entire file, turning it back into a plain file.³ At

the time WIMBoot was released, there was also a guidance document warning you not to run

around opening files for writing unnecessarily. Not opening files for writing unnecessarily is

good advice in general, but it’s particular important for WIMBoot in order to prevent

unnecessary conversion.

The Windows Overlay Filter can take advantage of newer compression algorithms developed

over the past 20 years, algorithms which produce better compression ratios, can be run in

parallel on multiple cores, and which require less CPU and memory for decompression. It

can also use algorithms tailored to the scenario: For example, it can choose algorithms where

compression is expensive but decompression is cheap.

Changing the native NTFS file compression would be a disk format breaking change, which is

not something taken lightly. Doing it as a filter provides much more flexibility. The downside

is that if you mount the volume on a system that doesn’t support the Windows Overlay Filter,

all you see is an empty file. Fortunately, WOF is used only for system-installed files, and if

you are mounting the volume onto another system, it’s probably for data recovery purposes,

so you’re interested in user data, not system files.

It’s called the “Windows Overlay Filter” because it “overlays” virtual files into a directory that

also contains normal physical files.

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/dn594399(v=win.10)
https://blogs.windows.com/buildingapps/2014/08/21/ensuring-compatibility-of-desktop-applications-with-wimboot-systems/#I5G2zxg4qgqsd37U.97

3/4

When you read through the above description, you may have realized something: Whenever

Windows Update updates a file, that file is converted from a virtual file to a plain

uncompressed physical file because the file’s backing data is no longer in the WIM file. This

means that over time, the Windows system files occupy more and more disk space as more of

them no longer match the copy in the WIM and revert from their compressed form to their

uncompressed form.

Windows 10 introduced a feature known as Compact OS, which takes a different approach.

With Compact OS, the Windows Overlay Filter gains the ability to recompress files: Based on

a hardware performance check, the system may decide to take the updated files, recompress

them, store the compressed data in the WofCompressedData alternate data stream, and free

the original uncompressed data using the same “sparse file” trick to make the file appear as if

it were a normal file.

If you open one of these recompressed files, the file is decompressed on the fly based on data

in the WofCompressedData alternate data stream. And as before, if you open one of these

files for writing, then the file reverts to its uncompressed form.

Bonus chatter: You can use the WofShouldCompressBinaries function to determine

whether the system is using WOF to compress system files. From the command line, you can

use the compact.exe program to inspect the compression state of a file, or of the system.

Oh, and going back to the customer’s original question: the system’s choice to use Windows

Overlay Filter compression spends a small amount of parallel computation in order to save a

small amount of I/O. It’s theoretically possible that you stumbled across a hardware

configuration where the system’s automatic evaluation suggested using the Windows Overlay

Filter even though it was a net performance loss. I guess that would happen if you had a

really fast storage device attached to a low-end CPU, and it somehow managed to trick the

the automatic evaluation into thinking that compression was a good idea. In practice, it is

rather unusual to have a hardware configuration consisting of fast storage and a slow CPU.

Many thanks to Malcolm Smith for his assistance with this article.

¹ The sector alignment was necessary to permit data to be rewritten into the middle of the

file. But since the Windows Overlay Filter doesn’t support writing, it doesn’t need to enforce

sector alignments.

² Since these files are Windows system files, opening them for writing requires administrator

access. Normal usage therefore would not trigger a full decompression.

³ This “decompress on write” behavior merely describes the current behavior and is not

contractual.

Raymond Chen

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/compact-os
https://docs.microsoft.com/en-us/windows/desktop/api/wofapi/nf-wofapi-wofshouldcompressbinaries
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/compact-os
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

